Apr
14
2018

Where Does Fat Go With Weight loss?

People often wonder where does fat go with weight loss? This question recently came up in a CNN conversation.  The answer was originally researched by Dr. Ruben Meerman and Professor Andrew Brown.

Dr. Meerman is an assistant scientist at the University of New South Wales and author of “Big Fat Myths: When You Lose Weight, Where Does the Fat Go?” Professor Brown is the head of the School of Biotechnology and Biomolecular Sciences at the same university.

When you lose 1 kilogram of fat, where does fat go with weight loss?

The interesting answer to this question is that fat gets metabolized. Dr, Meerman and Prof. Brown pointed out that originally Leifson et al. answered this question who used heavy oxygen and found out that this was metabolized into heavy water.

Technically these experiments are fairly complex, but they allow the researchers to see exactly where the body incorporates these chemicals and where they end up with breakdown of fat. The BMJ paper describes that the breakdown of 1 kg of fat follows the following pattern: It breaks down into 0.84 kg of CO2 (carbon dioxide) and 0.16 kg of H2O (water). In other words, the lungs are the primary organs that get rid of fat and the kidneys excrete the water. There is a bit of extra energy in this chemical reaction as well, which dissipates through the skin and through exhaled air.

What did health professionals think where the fat would go?

The health professionals were doctors, dieticians and personal trainers. About 65% of them thought fat would evaporate into energy/heat. About 10% thought fat would end up in the feces. 5% thought fat would turn into muscle. Another 5% thought fat would turn into sweat or urine. 8% were correct that fat would become CO2 and H2O. 7% said they did not know.

The chemistry of fat deposits and metabolizing fat

The body deposited triglycerides from the liver metabolism of sugar and fatty acids into fat cells and stored them as oleate (C18H34O2), palmitate (C16H32O2), and linoleate (C18H32O2). Part of this are many chemical reactions, including a number of enzymes. These fatty acids form esters and turn into gigantic molecules with this chemical formula: C55H104O6. The BMJ paper further says that an overall chemical description of metabolized fat would look like this:

C55H104O6+78O2→55CO2+52H2O+energy. In plain English it means that 1 molecule of fat ester (from fat storage) is metabolized together with 78 molecules of oxygen. This results in 55 molecules of carbon dioxide, 52 molecules of water and energy.

Fat turns into carbon dioxide and water

Based on this chemical reaction a calculation of the breakdown of fat into carbon dioxide and water was possible. The surprising result is that 84% of fat becomes carbon dioxide and only 16% of fat becomes water. We exhale the carbon dioxide from our lungs and it is mostly the kidneys that excrete the water. People who lose weight are aware that they have to urinate more often. But they do not notice that they get rid of a lot of carbon dioxide, as this is a subtle process.

Some observations from the fasting mimicking diet

The fasting mimicking diet (FMD) was at the center of the most recent anti-aging conference in Las Vegas I attended. This was the 25th Annual World Congress on Anti-Aging Medicine in Las Vegas, Dec. 14-16, 2017. Late in December 2017 I started 5 days of FMD and have just completed my 4th round of it (FMD is done 5 days out of each month). My main interest in doing this is to prevent heart attacks and strokes and I like the idea of stimulating telomeres for anti-aging and increasing stem cell production. See more details under this link.

Personal experience of fasting mimicking diet

I keep meticulous records of my body measurements using daily body composition scales, which I record in a booklet. Between March 23, 2018 and March 28 I lost 1.5 kg from 64.8 kg to 63.3 kg. Fat composition was reduced from 14.1% to 12.2%. Visceral fat was reduced from 6% to 5%. My muscle percentage rose from 38.1% to 39.1%. The basic metabolic rate was 1471 Calories on March 23 and went down to 1449 Calories on March 28. My body mass index went from 22.0 to 21.5.

I definitely noticed the frequent urination, something I had noticed in the past in 2001 when I lost 50 pounds over 3 months. Of course it is understandable when you reduce your daily calorie intake to 600 Calories per day that you will lose this amount of weight. People have different metabolisms. It may be that you won’t lose as much as I did.

What causes mainly weight loss?

There are many people who think that extra exercise would help you lose weight. But a publication has established that only about 8% of weight loss is due to exercising. 92% of weight loss is due to dieting.

Regular exercise is important for conditioning of your lungs, heart, muscles and joints. But to keep things in balance a reasonable diet, like a Mediterranean diet, should also be part of the regimen.

Sugar overconsumption

The obesity wave in the US started to take off between 1976 and 1980. 40 years later it is still rising. It is interesting to note that both wheat flour and sugar consumption in the US were increasing parallel to the rising obesity figures. In the 70’s the old-fashioned wheat has changed into the force hybridized Clearfield wheat, which is now 100% of the commercially available wheat. Clearfield wheat contains 7-fold higher gluten amounts than the old-fashioned wheat that your grandparents consumed. Gluten stimulates your appetite, so you crave more wheat and you crave more sugar. This becomes a vicious cycle.

Excess calories are stored as fat

The liver metabolizes sugar from regular food and from processed food into triglycerides and LDL cholesterol (the bad cholesterol that plugs up arteries). As I mentioned above, the body stores any excess triglycerides as fat and deposits the excess into fatty cells. You see from this that essentially sugar and wheat end up as fat deposits. I suggest you change your food intake into eating sensible food with fewer calories. Start by eliminating most of your sugar, wheat and processed food intake. This will help you to melt fat away as I showed with an example of my 5 day FMD.

Where Does Fat Go With Weight loss?

Where Does Fat Go With Weight loss?

Conclusion

I reviewed facts about the chemistry of melting fat away. The question is where does fat go with weight loss? In the process of weight loss fat breaks down into carbon dioxide and water. I also documented how you can lose fat in just 5 days (1.1 kilogram) on a 600-calorie diet and reduce the body mass index from 22.0 to 21.5.

Most people do not recognize the importance of watching their diet to achieve weight loss. 92% of weight loss occurs as a result of dieting. Wheat and sugar consumption have a direct connection to the obesity wave that started between 1976 and 1980. I have cut out all wheat, all sugar and all processed food in 2001. This allowed me to lose 50 pounds then and my body mass index today is 21.5. It can be done, even if you are 73 years old.

Feb
24
2018

What Causes Premature Aging?

Some people look 10 years older than their stated age, and we often wonder: what causes premature aging? Accelerated or premature aging can have a multitude of underlying causes. I will list a few here:

1. Weakening hormones

Men go through andropause at around the age of 60 to 65 and women go through menopause around the age of 55 to 65. In both males and females it is the sex hormones that are missing around that age. If hormones replacement follows fairly quickly with bioidentical hormones, this will not affect the visual appearance that much. In contrast, if bioidentical hormones are not the therapeutic choice for  hormone replacement, but synthetic ones, the hormones are not in balance, as synthetic hormones do not restore the hormonal balance. Nothing is gained, as the person will still age prematurely.

Synthetic versus bioidentical hormone replacement

In addition the synthetic hormones will cause heart attacks, strokes, clots, and cancer. Prescriptions for synthetic hormones are often the cause that the aging patient population gets these serious complications. Frequently physicians insist on using synthetic hormones from a “reputable” drug company to replace missing hormones. The reason this does not work is that a male has testosterone receptors. They need to be stimulated by bioidentical testosterone to restore all of his missing functions. Also, the same is true in menopausal females who need stimulation of their estrogen receptors and progesterone receptors. Consequently, only bioidentical hormones will return a postmenopausal woman back to normal. There is a perfect fit between the bioidentical replacement hormones and her hormone receptors. Using synthetic hormones is like trying to unlock a door with a key that does not have a perfect fit: you damage the lock!

2. Missing human growth hormone (HGH) and thyroid hormones

These hormones have a special place in aging.

Human growth hormone deficiency

First, HGH production is running out in many people at age 60. A person with HGH deficiency will have lower muscle mass and strength. Other symptoms are dry and thin skin, particularly at the back of the hands. Men are balding, and they loose interest in sex. There are difficulties concentrating and they may have “senior moments”, which are memory lapses. Often they are prone to depression and anxiety. A blood test will frequently show elevated triglycerides. A blood test (IGF-1) and a urine test exist which make it possible to look for HGH metabolites to assess whether a 40, 50 or 60 year-old person is producing enough HGH. Many may need replacement of HGH. This is administered by injection through a tiny needle into the skin, similar to a diabetic injecting insulin. This will bring back what was missing due to HGH deficiency.

Thyroid hormone deficiency

Thyroid hormones (T3 and T4) are other important factors that could make you look older prematurely. Your hair is getting thinner; your skin turns dry and pale. The nails may be getting brittle. When the outside half of the eyebrows is very thin or missing, this can be a sign of hypothyroidism. In a similar vein the skin in the face may be puffed up due to swelling of the layers under the skin (myxedema). It is important to diagnose hypothyroidism, which is common in the aging population. The physician needs to order a blood tests (TSH, T3 and T4). If TSH is above the upper limit, your physician needs to replace both T3 and T4 by tablets (I prefer Armour as the T3 and T4 is balanced).

3. Smoking

The lining of the airways absorb cigarette smoke. The chemicals circulate around in the blood and lead to aging of the skin. Chronic cigarette smoke exposure also melts away the subcutaneous tissue. The end result is a haggard look. The natural glow disappears from the skin and because of carbon monoxide binding to hemoglobin the skin color looks more greyish. In addition the blood vessels are narrowing or clogging. This means that the body cannot absorb nutrients as well, and cells are starving. There is only one remedy for this: quit smoking!

4. Overexposure to ultraviolet light

The radiation of UV light can penetrate deep into and under the skin. This makes the subcutaneous fat melt away. The largest UV exposure is in the facial area. As a result we see aging there. The end result is a sagging appearance of the face. This link has an image of a woman before and after a non-surgical facelift with stem cells and fatty tissue: Stem Cell Treatments That Are Currently Available – Medical Articles by Dr. Ray

In a surgical procedure the physician harvests mesenchymal stem cells from fatty tissue by liposuction. A cell separator separates the mesenchymal stem cells, the connective tissue and the fat cells. The connective tissue is discarded. Mesenchymal stem cells and fat cells are mixed and injected into the thinned subcutaneous fatty tissue until the person’s younger facial contour is back to normal. Typically this will last for 10 years or more.

5. Drugs and alcohol abuse

Both can lead to malnutrition with weight loss and loss of subcutaneous fatty tissue, which causes sagging breasts in women. In men “beer tits” are common. The reason for this is estrogen accumulation, as alcohol interferes with the elimination of estrogen in the liver. Alcohol is a general cell poison. It causes all of the cells to age prematurely. The more alcohol you drink, the faster you age. The skin develops wrinkles, loss of elasticity and collagen, redness and puffiness. In other words chronic alcohol abuse ages you prematurely. The only remedy for this is to quit drinking. Some of your skin vitality may come back. Our body has an amazing capability to heal itself!

6. Medical illnesses

Many medical illnesses like diabetes, mental illness (depression and schizophrenia), multiple sclerosis, inflammatory bowel disease; cancer and others make you look a lot older very fast.

I will briefly explain the reasons for this.

  • Diabetes

With diabetes type 2 the pancreas releases too much insulin after a meal with starches and sugar; think about a sweet muffin or a toast with jam. The extra insulin causes inflammation. This stimulates enzymes that break down elastin and collagen, leading to wrinkles and sagging skin.

  • Mental illness like depression and schizophrenia

We know from studies that depression leads to shortening of telomeres. This in turn causes cell death in the most rapidly dividing cells like in the skin and hair follicles. The end result is prematurely aged hair and skin. Schizophrenia also leads to premature shortening of the telomeres, which causes premature aging, mitochondrial dysfunction, inflammation and oxidative stress. The end result is that the person looks older than what their chronological age is.

  • Multiple sclerosis

It is sometimes difficult to discern in patients with MS what is normal aging and what is aging from the disease. This link gives some background on this. Many MS patients are anxious, and anxiety and stress by itself also leads to premature aging.

  • Inflammatory bowel disease

The chronic inflammation of either ulcerative colitis or Crohn’s disease can lead to premature aging. High doses of vitamin D3 and molecularly distilled fish oil can be useful to help treat the inflammation. Probiotics are also important to restore the bowel flora.

  • Cancer

Cancer leads to cachexia (excessive weight loss). There is also excessive inflammation, which leads to accelerated aging. The inflammation causes increased oxidative stress. This leads to tissue damage and DNA damage, which makes all cells more vulnerable to develop other cancers. Oxidative stress can substantially accelerate telomere shortening. As a result skin can become saggy, wrinkles develop and the person looks prematurely aged.

7. A chronic lack of physical activity

People who never exercise tend to get overweight and eventually obese. This leads to premature aging. Exercise would elongate telomeres, but inactivity shortens them. Obesity leads to increased oxidative stress and to DNA damage. Obesity also shortens telomeres. All of this leads to premature aging.

What Causes Premature Aging?

What Causes Premature Aging?

Conclusion

These are only a few examples of causes of accelerated aging. The key is to stick to a healthy, balanced diet (like the Mediterranean diet) and exercise regularly. Stop smoking (if you do), don’t take street drugs, and make sure you get enough sleep. Getting enough sleep helps your hormones regenerate overnight. The sympathetic overdrive from your daily activities is counterbalanced by the parasympathetic activities during sleep that causes relaxation. For hormone replacement you may have to see an anti-aging physician, a naturopath or integrative medicine physician. This may be your only chance to address any hormonal deficiencies. Conventional medicine does a very poor job of HRT (hormone replacement therapy) with synthetic hormones. Conventional practitioners want to treat you with synthetic hormones that will make you sick. Hormones for replacement have to be bioidentical! This way you will live 10 to 15 years longer, look younger and stay healthy.

Incoming search terms:

Sep
09
2017

Young Heart Stem Cells Can Cure Old Hearts

Young heart stem cells can cure old hearts in rats. This is what research at the Cedars-Sinai Heart Institute in Los Angeles found. You may not be that impressed, because this talks about rats and not humans. But this is a brand-new concept, so of course research of animal experiments is first.

The heart experiment

Dr. Eduardo Marbán, MD, PhD, is the research director of the Cedars-Sinai Heart Institute. His idea was to take cardiac stem cells (called cardiosphere-derived cells) from hearts of newborn rats. He injected them into 22 months old rats. The human equivalent for 22 months old rats are older people with older hearts. Within one months of the stem cells’ injections the older rats had normal functioning hearts. Their telomeres were also normal. Telomeres are the caps of the chromosomes of the heart cells. The researchers were astonished to find that the previously short telomeres had become longer. This happened within only one month of the stem cell injections. To Marbán’s surprise the older rats also grew hair faster and gained 20% of their previous exercise tolerance limit. In other words, the injection of heart stem cells had rejuvenated the old rats.

Dr. Marbán has previously shown that exosomes play an important role with stem cell regeneration of old heart cells. These particles from the stem cell donor contain RNA and other growth factors.

Overview of how stem cells can reverse heart failure

Cardiovascular disease includes high blood pressure, coronary artery disease, stroke and congestive heart failure. About 2600 Americans die from cardiovascular disease each day in the US. This is roughly one death every 34 seconds. With old age, if a heart attack does not kill you, congestive heart failure will. With heart failure your heart ceases to pump enough blood through your system. Nutrients and oxygen need to reach all of our cells or it means death for the patient. With the knowledge of this serious background, stem cells have come into the focus in an attempt to combat congestive heart failure.

Animal experiments with stem cells in mice, rats and pigs have shown some progress in restoring better heart function. Researchers used different sources of stem cells, like cardiac stem cells that reside in the heart muscle itself. They also used other stem cell sources. Among these were myoblasts (from muscle), mesenchymal stem cells (from fat tissue) and bone marrow stem cells. Several smaller human trials showed that improvement of heart function was possible following a heart attack. In the procedure the surgeon opened coronary arteries and injected stem cells into the affected damaged heart muscle. How can we assess the result of a successful stem cell treatment? By measuring the left ventricular ejection fraction. This means that the heart can deliver a larger volume of blood every minute. The heart pumps more blood from the left ventricle with each heartbeat than before the treatment.

Other experiments that rejuvenate tissues of older animals

Another line of experiments in this paper shows that certain growth factors are necessary to activate stem cells.

  1. One experiment from the 1950’s describes the stitching together of the skin on their flanks joined an old and a young rat. After this procedure the blood vessels grew and joined the two animals circulatory systems. The older animals knee cartilage damage was no longer there, as the cells from the young animals’ blood had healed the damage.
  2. Research had no knowledge of this fact at that time. But another research group in the 2000’s repeated the experiment and could prove that the stem cells of the young animals activated the growth factors in the old animals.
  3. In 2004 Dr. Rando noted that muscle cells of aging mice were aging because of a lack of stimulation of the local skeletal muscle stem cells. These are satellite cells. Experiments similar to the rat experiment showed that there were factors in the blood of young mice that could re-activate stem cells in the muscles of old mice. Agility and movement of the older mice improved. The improvement in the older mice with knee arthritis disappearing and liver cells rejuvenating was astounding.

More evidence that rejuvenation of heart cells is possible

  1. Amy J. Wagers, a former colleague of Dr. Rando carried on experiments with respect to rejuvenation of hearts in mice. She and her colleagues found what stimulated the hearts of old mice. It was a protein called GDF11 (from young mice).  This 2016 publication describes the action of GDF11.
  2. A 2014 paper describes that GDF11 was able to restore aging muscles to a youthful state. But the researchers were also able to rejuvenate stem cell function in general with GDF11.
  3. Another paper describes that blood from young mice stimulates the brain of older animals to achieve rejuvenation. It is the protein of the young stem cells (called GDF11) and possibly other growth factors to bring about this rejuvenation. It works not only on heart cells, but also on hippocampus tissue in dementia models. This may be important in humans for treatment of Alzheimer’s disease.

“We can turn back the clock instead of slowing the clock down.” Dr. Toren Finkel said. He is the director of the Center for Molecular Medicine at the National Heart, Lung and Blood Institute. He went on to say: “That’s a nice thought, if it pans out.” But others who caution that overstimulation of stem cells could cause cancers say: “It is quite possible that it will dramatically increase the incidence of cancer,” Dr. Irina M. Conboy said, a professor of bioengineering at the University of California, Berkeley. “You have to be careful about overselling it.”

Degenerative changes in humans responding to stem cells

Many degenerative changes in humans respond to stem cell treatments. Are there stem cells present in degenerative tissue in humans similar to the animal experiments described above? Are the stem cells merely providing growth factors so the dormant stem cells jump into action and regenerate? Could it be that in future therapists could give a certain growth factor mix  intravenously to a patient, and the same effect as stem cell injections would be posssible? These are all unanswered questions, but research in the next decade should answer at least some of those questions.

Growth hormone improving heart function in heart failure patients

In 2008 a metaanalysis of human studies of congestive heart failure and treatment with human growth hormone (HGH) injections was a research topic. It showed an average increase of the ejection fraction by 4.3%. There were also increased cardiac output, decreased systemic vascular resistance and improved hemodynamic effects. The question is whether the effect is a direct effect on the heart muscle cells by HGH or whether HGH was recruiting dormant heart muscle stem cells. This is not clear at this point.

Young Heart Stem Cells Can Cure Old Hearts

Young Heart Stem Cells Can Cure Old Hearts

Conclusion

We have entered an exciting period of medical research. Although there is only a record of many animal experiments, there is overwhelming evidence that the same principles are true in humans. Many stem cell protocols for humans have already seen use for various applications. But stem cell treatments for heart disease are still in their early stages. As it becomes obvious from my review of this topic, some patients who were part of clinical trials have already experienced positive results. Congestive heart failure or poor pump performance following a heart attack have improved following various stem cell procedures. In the next few years there likely will be a proliferation of treatment options for patients. Although some critics have pointed out a possibility of cancer developing as a side effect of stem cell treatment, no evidence is noticeable at this point.

Incoming search terms:

Sep
02
2017

Resveratrol Effective In Humans

Resveratrol has been labeled a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

A 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage I hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension was defined as a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Each subgroup was divided into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years. The purpose of the trial was to determine the effect of resveratrol, which was added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gamma-glutamyl transferase (Gamma-GT) were normal in the group where resveratrol had been added.

Resveratrol effective in humans: diabetes patients

Resveratrol helps diabetes patients. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. Resveratrol was given to a high group (1000 mg per day), a low group (150 mg) and a placebo (fake pills) were given to the third group. The end point was an elevation of the bone alkaline phosphatase (BAP). This was measured in the beginning of the study and at 4, 8 and 16 weeks. The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can potentially be used as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

The Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is known for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11states enrolled in the study. In 1980 diet sheets were used to determine who was adhering to a Mediterranean diet. 4676 middle-aged participants were identified to qualify for this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. Fish and lean meats were also consumed. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres. The lead author Marta Crous-Bou stated that overall healthy eating was associated with longer telomeres compared to the control group. But the strongest association was found in women who adhered to the Mediterranean diet when compared to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Longer telomeres have been found to be associated with the lowest risk to develop chronic diseases and the highest probability of an increased life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. It has been shown in humans that increased physical activity elongated telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

As this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol can also be used in combination with other cancer treatments, which improves survival figures. As the link above explains, more cancer clinical trials with a variety of cancers and larger patient numbers are required, but many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

In this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has been shown to be anti-inflammatory. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. As this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study has also confirmed that resveratrol from red wine is what is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. 1500 mg of resveratrol or placebo were administered daily for 3 months. Serum total testosterone was decreased by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%. Fasting insulin level was reduced by 31.8%. At the same time insulin sensitivity was increased by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

A double blind, randomized, placebo-controlled study was done on 50 diabetics. The cardio-ankle vascular index (CAVI) was used to determine arterial stiffness. The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics are known to have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. Bowel disease questionnaires were used to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group was given 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. It is known that the hippocampus is the seat for short-term memory, which is lost in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. Because of these combined anticancer properties resveratrol is a chemotherapeutic agent that can be combined with conventional anticancer drugs.

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

Jul
01
2017

Advanced Glycation End Products (AGEs)

Advanced glycation end products (AGEs) form when food is cooked at high temperatures. Sugar molecules react with proteins crosslinking them and changing how they function. It prevents proteins from doing their job. Glycation also causes inflammation, which damages mitochondria, the power packages inside cells that provide the body with energy. Overall AGEs lead to premature aging, which comes from the toxic protein reactions. Advanced glycation end products accumulate as glycated proteins in the tissues of the body. This leads to mitochondrial dysfunction.

Effect of advanced glycation end products (AGEs) on the body

The following tissues are frequently affected by the toxic effect of AGEs.

  • The accumulation of AGEs can cause kidney disease and kidney failure (renal failure). In this case the kidneys no longer filter the blood to excrete waste. Hemodialysis may be required.
  • Joint cartilage is damaged by AGEs so it can no longer handle stress and joint stiffness sets in. AGEs are now recognized as a major cause of osteoarthritis.
  • Cross-linked proteins from AGEs can cause Alzheimer’s and Parkinson’s disease. Damaged proteins accumulate in brain cells that disable and kill them eventually.
  • Glycation of LDL particles has been well documented as an important cause of increasing the plaque formation in arteries by LDL. Glycated LDL is much more susceptible to oxidation than regular LDL. Oxidized LDL causes damage to the lining of the arteries and destroys endothelial nitric oxide synthase. This is a critical enzyme, which is involved in maintaining vasodilatation and blood flow. Once LDL has become glycated, it is deformed and LDL receptors can no longer recognize it. This means that glycated LDL continues to circulate in the bloodstream where it contributes to the atherosclerotic process. It forms a plaque which becomes a reason for heart attacks and strokes. Glycation of LDL is particularly common in patients with diabetes.
  • Glycation of the skin sensitizes the skin to UV light damage. It triggers oxidative stress that increases the risk of skin cancer.
  • Glycation damages our eyes. It causes clouding of the lens (cataracts) and it damages the retina. Macular degeneration can ultimately cause blindness.
  • When glycation affects the discs in the spinal cord, this can cause disc protrusions and disc herniations. Often the spinal nerves that are nearby get injured causing limping and leg or arm weakness.

Nutrients to counter AGEs

There are nutrients that can slow down the rate of glycation and as a result will halt the aging process.

Benfotiamine

Benfotiamine is a fat-soluble form of the water-soluble vitamin B1 (thiamine). It has been shown to reverse glycation in cell cultures and in humans.

As a result the damage to the cells that are lining arteries is reduced. Benfotiamine also counters diabetic neuropathy, retinopathy and nephropathy.

Pyridoxal 5’-phosphate

Pyridoxal 5’-phosphate is a metabolite of vitamin B6. It is similar to benfotiamine in that it counters glycation and dissolves deposited AGEs. It is particularly useful to stop fat and protein glycation. In diabetic patients lipid glycation is often a problem as these authors have shown. Pyridoxal 5’-phosphate traps glucose breakdown products before they become part of glycation reactions.

Carnosine

Carnosine is a dipeptide, made up of the amino acids histidine and beta-alanine. It is found in higher concentration in muscle and brain tissue. It scavenges for free radicals and prevents AGE formation. It is preventing both lipid glycation and protein glycation. This publication states that carnosine can play a role in preventing Alzheimer’s disease. As protein crosslinking is prevented with carnosine, tangled protein clumps cannot accumulate and cause Alzheimer’s disease.

Carnosine also reduces blood lipid levels and stabilizes atherosclerotic plaques. This reduces the risk of plaque rupture, which can cause a heart attack or stroke.

Carnosine also has a mitochondria stabilizing function resisting the destructive effects of oxidative stresses.

Luteolin

Luteolin is a bioflavonoid, which can be found in many plants. It has anti-inflammatory effects and works by suppressing the master inflammatory complex, called NF-kB.  NF-kB triggers the production of multiple cytokines and is associated with many cancers, chronic diseases, autoimmune diseases and septic shock. Kotanidou et al. did an experiment where they injected mice with Salmonella enteritis toxin, either with or without luteolin protection. Without luteolin only 4.1% of the mice survived on day 7. With luteolin protection 48% were alive on day 7.

Luteolin has been shown to be effective as an anti-inflammatory in the brain, the blood vessel lining, intestines, skin, lungs, bone and gums.

All these four supplements are available in the health food store. They work together and would be recommendable in diabetic patients where glycation is most prominent. But these supplements are also useful for older people who want to slow down the aging process in general.

Nutrients to slow down mitochondrial aging

Glycation is linked to mitochondrial deterioration and dysfunction. It accelerates aging in every aspect. AGEs (advanced glycation end products) crosslink proteins, lipids, but also damage enzymes and DNA. Mitochondrial energy production is slowed down by glycation. The end result is a lack of energy and slower repair processes, which all depend on mitochondrial energy production. The following supplements have shown some merit in reversing this process.

Pyrroloquinoline quinone (PQQ)

PPQ is a supplement that is known to produce new mitochondria in cells. This helps the energy metabolism of aging cells to recover.

Taurine

Taurine is an amino acid that is found abundantly in heart and skeletal muscles cells, brain cells and cells of the retina. These are areas in the body with high metabolic rates that can burn out mitochondria. Taurine regulates enzymes in mitochondria that harvest energy from food substances. In patients who experience accelerated aging, a lack of taurine can produce an energy crisis. But supplementation with taurine can rescue the cells by reducing oxidative stress and restoring the function of mitochondria in cells that are aging. Brain cells were putting out new shoots, called neurites when taurine was given as a supplement. This helps to improve brain connection, and preserves memory and cognition.

R-lipoic acid

R-lipoic acid helps with mitochondrial function by being involved with extracting energy from foods. When R-lipoic acid is given to aging animals, their metabolic function improves, the mitochondria become healthier and there are less oxidative stress-inducing byproducts. It protects their liver, heart and brain cells from oxidative stress in their mitochondria. It is becoming known as an energy-giving supplement.

Advanced Glycation End Products (AGEs)

Advanced Glycation End Products (AGEs)

Conclusion

Sugar overconsumption and overcooking food can cause advanced glycation end products (AGEs) where lipids and proteins get cross-linked. This leads to premature loss of organ function. The mitochondria are also slowed down. This creates prematurely aging. Fortunately there are a few supplements like benfotiamine, pyridoxal 5’-phosphate, carnosine and luteolin. They protect against glycation. Mitochondria can also be protected by PPQ, taurine and R-lipoic acid. Although we cannot stop the aging process, avoiding sugar and stopping to consume overcooked food, such as barbecued meats and deep fried food is a sensible step in prevention.

With this approach and some supplements a lot can be done to slow down aging.

Incoming search terms:

Mar
25
2017

How Stress Affects Our Hormone System

Dr. Andrew Heyman gave a talk recently about how stress affects our hormone system. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Understanding the Stress, Thyroid, Hormone Connections & Prioritizing Systems”.

Dr. Heyman stressed that there is a triad of hormonal connections that is important to remember: the thyroid hormones, the stress hormones (adrenal glands) and the pancreas (insulin production). We need a balance of these hormones for optimal energy production and circulation. Under stress our sugar metabolism can derail, we develop obesity and fatigue. When balanced we experience vitality and wellbeing.

Metabolic activation pathways

Dr. Heyman projected a slide that showed the metabolic activation pathways. He stated that a number of different factors could influence the hormone system:

  • Diet: trans fats, sugar, too many carbs, food allergies.
  • Drugs: drug-induced nutrient depletion (over-the-counter drugs, prescription drugs).
  • Physical exercise: frequency and type matters.
  • Environmental exposure: chemicals, pesticides, herbicides, heavy metals, plastics, molds, and pollens.
  • Stress: physical stress, psychogenic stress.
  • Genetics: methylene-tetra-hydro-folate reductase enzyme deficiency (MTHFR mutation), APOE genes, lack of vitamin D
  • Disease: past or present conditions, active disease or syndromes.

Target areas within your system

The target areas in your system are the

  • Pancreas, where blood sugar can rise because of insulin resistance. Too much insulin production causes inflammation, hormone disbalances, kidney damage, and hardening of the arteries through plaque formation.
  • Thyroid gland, which gets activated by TSH (thyroid stimulating hormone), but can also be affected negatively by autoantibodies).
  • Brain: decrease in serotonin resulting in anxiety, depression and food cravings; decreased melatonin causing sleep disturbances; increased ghrelin and decreased leptin secretion leading to overeating and obesity.
  • Liver/kidneys: both of these organs are important for detoxification; the liver produces thyroid binding globulin, which when increased can lower the free thyroid hormones.
  • Immune system (gut, lymph glands): the Peyer’s patches in the gut mucosa produce a large portion of the immune cells; lymph glands, the bone marrow and the spleen supply the rest. A leaky gut syndrome can affect the whole body, causing inflammation and autoimmune reactions.
  • Hypothalamus/pituitary/adrenal glands: this is the main axis of the stress reaction. If the brain is stressed, the hypothalamus sends a cascade of activating hormones via the pituitary gland and the adrenal glands. This leads to cortisol overproduction, and release of epinephrine and norepinephrine from the center of the adrenal glands. High blood pressure, anxiety, heart palpitations, arrhythmias and more can develop from this.

Hypothalamus/pituitary/adrenal glands activation and clinical effects

The main hormone axis of the stress reaction goes from the hypothalamus via the pituitary gland to the outside surface of the adrenal glands where cortisol is released. It is also called the HPA axis. Stressed people make too much cortisol, which weakens immune functions, reduces human growth hormone production, increases belly fat, increases blood pressure and reduces insulin action. Stress also reduces estrogen production in women and testosterone production in men.

The final clinical presentation is osteopenia, then osteoporosis with spontaneous fractures of bones. There is cardiovascular disease leading to heart attacks and strokes, and cognitive decline with memory loss. There are complications with infections. Also the metabolic syndrome can lead to obesity and type 2-diabetes.

Stress and the hippocampus

In the center of our brain there is a memory-processing unit, the hippocampus that converts short-term memory into long-term memory. Repeated stress interferes with normal hippocampus function. High cortisol levels interfere with the proper functioning of the hippocampus causing memory problems.

Chronically elevated cortisol levels from chronic stress have been shown to lead to hippocampus atrophy and can cause Alzheimer’s disease.

Effects of chronic stress

Chronic stress leads to cardiovascular disease, to diabetes, chronic inflammation, Alzheimer’s disease, thyroid disorders, cancer, neurological disorders and autoimmune diseases. Inflammation research has shown that with chronic inflammation tumor necrosis factor-alpha (TNF-alpha) is released, as key player of chronic inflammation. This however leads to the release of other inflammatory kinins like IL6 and others. The resulting chronic inflammation can cause Crohn’s disease, rheumatoid arthritis, insulin resistance, dementia, metabolic syndrome, obesity and atherosclerosis with associated markers (decreased HDL, increased LDL, CRP and triglycerides).

Hormone imbalance causes disease

  1. Excess cortisol production from stress leads to Th2 type inflammatory kinins; usually associated with this is a reduction of DHEA (a male hormone in the adrenal glands), which leads to reduced Th1 type kinins. The end result is chronic inflammation. When chronic stress has tired out the adrenal glands, a four-point salivary cortisol level test shows a flat curve. This indicates adrenal gland fatigue or, if worse, even adrenal gland insufficiency. Such a pattern is found in patients with leukemia, breast cancer, uterine cancer, prostate cancer, pituitary gland cancer and lung cancer.
  2. The metabolic syndrome is associated with dysregulation of the HPA axis. People who have this syndrome have a high morning serum cortisol level. High cortisol increases the risk to develop metabolic syndrome.
  3. Metabolic connections: high cortisol leads to a partial blockage of thyroid hormones, which in turn leads to hypothyroidism. Hypothyroidism will affect glucose tolerance, and if not treated leads to type 2 diabetes.

In a large study involving 46,578 members of Kaiser Permanente Northwest it was determined that for every 1 point above a fasting glucose level of 84 mg/dL there was an additional 6% risk to develop type 2 diabetes over the next 10 years.

Pathological hormone disturbances

The following hormone patterns were discussed in detail, an increased cortisol level, increased insulin level and decreased thyroid levels.

Elevated cortisol

Prolonged elevation of cortisol leads to atrophy of the hippocampus with brain atrophy and Alzheimer’s or dementia. The immune system gets altered, there is lower DHEA hormone leading to weaker muscles and weakened immunity. There is insulin resistance (decreased insulin sensitivity), decreased serotonin and increased depression. Carbohydrate cravings lead to weight gain (central obesity). Changes in the thyroid metabolism leads to hypothyroidism.

Increased insulin level

People who develop high insulin levels are usually sugar or carbohydrate addicts. As they gain weight they change their metabolism into the metabolic syndrome. The extra insulin that is floating around triggers the insulin receptors to become less sensitive (also called “resistant”). The people love to eat. They snack frequently on protein bars and candy bars. As they gain weight, their energy goes down and they often develop painful joints. This prevents them from being physically active. They notice episodes of foggy thinking. Women complain of frequent yeast infections.

The body tries to compensate by slightly decreasing thyroid hormones and slightly increasing cortisol levels.

Decreased thyroid levels

There is increased lactic acid production and decreased insulin sensitivity. Oxidative stress is increased. The patient is depressed and cognition and memory are reduced. The gut has slower motility. The mitochondria, the energy packages in each cell are reduced and functioning less productively. Cardiac function is reduced.

The body tries to compensate for the primary thyroid weakness by slightly elevating insulin and cortisol.

Treatment of stressed hormone system

Before the doctor can treat a disbalanced hormone system, blood tests have to be done that show what kind of hormone constellation is present. Dr. Heyman suggested the following support with supplements.

Treatment of thyroid disorders

Thyroid supplementation may involve any of these: Selenomethionine, iodine, chromium, thyroid glandular, tyrosine, ferritin, Ashwagandha, coleus forskohlii, 7-keto DHEA, ferritin and iron. Other possible supplements that were mentioned by Dr. Heyman were Rhodiola, schisandra, ginseng, Rg3, eurycoma longifolia, neuromedulla glandular, DHEA, tryptophan/5 HTP, licorice, Cordyceps.

This, however, is not all. Missing thyroid hormones have to be replaced with a balanced T3/T4 medication like Armour thyroid.

Adrenal support

The following supplements are used to support adrenals: Adrenal glandular, vitamin C, adrenal cortex extract, Holy Basil, Pharma GABA, Magnolia/Phellodendron, L-theanine, sterols & sterolins.

Pancreatic support

These supplements support the insulin production in the pancreas:

Chromium, vitamin D, magnesium, alpha-lipoic acid, fish oil, micro PQQ, bitter melon, cinnamon, arginine, vanadium, benfotiamine (synthetic derivative of B1 vitamin) and Bergamot.

Dr. Heyman completed his talk by giving a few patient examples, explaining what blood tests showed, what the hormone disbalance was, and which treatment options were helpful.

How Stress Affects Our Hormone System

How Stress Affects Our Hormone System

Conclusion

Dr. Andrew Heyman gave a talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. He talked about how stress affects our hormone system. Symptoms from stress can stem from different causes including hormone disbalances. Conventional medicine would simply treat the symptoms. However, this will not be successful with stress-induced hormone disbalances, because it does not treat the causes. Causal treatment of the hormone disbalance will restore the person’s wellbeing and the symptoms will disappear at the same time. Anti-aging medicine and integrative medicine are attempting to follow this approach.

Incoming search terms:

Feb
25
2017

Heart Health Improves With Hormone Replacement

Dr. Pamela Smith gave a lecture in December 2016 showing that heart health improves with hormone replacement. Her talk was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9 to Dec. 11, 2016) in Las Vegas, which I attended. The title of the talk was: “Heart health: The Importance of Hormonal Balance for Men and Women”. Her keynote lecture contained 255 slides. I am only presenting a factual summary of the pertinent points here.

1. Estrogen

Observations regarding risk of heart attacks

  1. Women have a lower risk of heart attacks before menopause compared to men of the same age.
  2. Heart attack rates go up significantly after menopause.
  3. Estrogen replacement therapy may reduce the risk of heart attacks by 50% for postmenopausal women.

Lipid profile after menopause

There is an elevation of LDL cholesterol, total cholesterol and triglycerides as well as lower HDL cholesterol levels. All of this causes a higher risk of heart attacks for postmenopausal women. Estrogen replacement therapy increases the large VLDL particles, decreases LDL levels and raises HDL-2. These changes are thought to be responsible for helping reduce heart attack rates in postmenopausal women who do estrogen replacement therapy (ERT).

Difference between oral and transdermal estrogen replacement

When estrogen is taken by mouth, it is metabolically changed in the liver. This reduces the protective effect on the cardiovascular system. In contrast, transdermal estrogen (from commercial estrogen patches or from bioidentical estrogen creams) has a higher cardioprotective effect. The liver does not metabolize transdermal estrogen. Dr. Smith explained in great detail using many slides how estrogen prevents heart attacks. Details about this would be too technical for this review. Apart from lipid lowering effects there are protective effects to the lining of the arteries. In addition there are metabolic processes in heart cells and mitochondria that benefit from estrogens. The end result is that postmenopausal women who replace estrogen will outlive men by about 10 years. Stay away from Premarin, which is not human estrogen, but is derived from pregnant mares. Also the tablet form is metabolized by the liver, which loses a lot of the beneficial effects that you get from transdermal estrogen. 

How can you document the beneficial effects of estrogen replacement?

  1. Carotid intima measurements in postmenopausal women on ERT show a consistent reduction in thickness compared to controls.
  2. The physical and emotional stress response is reduced compared to postmenopausal women without ERT.
  3. Hormone replacement therapy in postmenopausal women reduces blood pressure. Measurements showed this effect to be due to a reduction of angiotensin converting enzyme (ACE) by 20%. This is the equivalent of treating a woman with an ACE inhibitor without the side effects of these pills.
  4. Coronary calcification scores were lower in postmenopausal women on ERT than a control group without ERT. These calcification scores correlate with the risk for heart attacks.
  5. Oral estrogen replacement leads to proinflammatory metabolites from the liver metabolism of estrogen. This is not found in the blood of women using transdermal estrogen. The anti-inflammatory effect of transdermal estrogen is another mechanism that prevents heart attacks.
  6. Postmenopausal women on ERT had no increased risk of heart attacks or venous thromboembolism (clots in veins). Menopausal women without ERT have a risk of 40% of dying from a heart attack. Their risk of developing breast cancer is 5.5%, the risk of dying from breast cancer is about 1%. Oral estrogen use was associated with venous thromboembolism.
  7. Estrogen has antiarrhythmic effects stabilizing the heart rhythm. Dr. Smith said that in the future intravenous estrogen might be used to prevent serious arrhythmias following heart attacks.

Estrogen levels in males

Males require a small amount of estrogens to maintain their memory, for bone maturation and regulation of bone resorption. But they also need small amounts of estrogen for their normal lipid metabolism.

However, if the estrogen levels are too high as is the case in an obese, elderly man, there is an increased risk of heart disease. Factors that lead to increased estrogen levels in an older man are: increased aromatase activity in fatty tissue, overuse of alcohol and a change in liver metabolism, zinc deficiency, ingestion of estrogen-containing foods and environmental estrogens (also called xenoestrogens).

2. Progesterone

Progesterone is significantly different from the progestin medroxyprogesterone (MPA). MPA was the oral progestin that was responsible for heart attacks and blood clots in the Women’s Health Initiative. MPA increases smooth muscle cell proliferation. This in turn causes hardening of the coronary arteries. In contrast, progesterone inhibits smooth muscle cell proliferation, which prevents heart attacks. Progesterone also lowers blood pressure and elevates HDL cholesterol, but MPA does not.

Progesterone in males

In a small study Depo-Provera was given to males for 17 days. Blood tests showed a lowering of triglycerides, LDL cholesterol and Apo A-1.

3. Testosterone

Testosterone replacement in women

Testosterone in women does not only increase their sex drive, but also relaxes the coronary arteries in women who were testosterone deficient. This allows more blood flow to the heart. In postmenopausal women testosterone replacement lowered lipoprotein (a) levels up to 65%. The physician will only replace testosterone in women who have either enough of their own estrogen production or else have been replaced first with bioidentical estrogen. Otherwise testosterone alone can cause heart attacks in women.

Elevated testosterone in women with PCOS

Women with polycystic ovary syndrome (PCOS) can have increased testosterone levels when they go through premenopause or menopause.

Women with PCOS are at a higher risk to develop diabetes, heart disease and high blood pressure. 50% of women with PCOS have insulin resistance. 70% of women with PCOS in the US have lipid abnormalities in their blood.

Elevated testosterone levels in the blood can lower the protective HDL cholesterol and increase homocysteine levels. Both can cause heart attacks.

Women with PCOS have a 4-fold risk of developing high blood pressure.

Testosterone replacement in males

A 2010 study showed that low testosterone levels in males were predictive of higher mortality due to heart attacks and cancer. Low testosterone is also associated with high blood pressure, heart failure and increased risk of cardiovascular deaths. There was a higher incidence of deaths from heart attacks when testosterone levels were low compared to men with normal testosterone levels.

Low testosterone is also associated with the development of diabetes and metabolic syndrome, which can cause heart attacks.

It is important that men with low testosterone get testosterone replacement therapy.

DHT (Dihydrotestosterone)

DHT is much more potent than testosterone. Conversion of testosterone leads to DHT via the enzyme 5-alpha-reductase. While testosterone can be aromatized into estrogen, DHT cannot. Some men have elevated levels of DHT. This leads to a risk of heart attacks, prostate enlargement and hair loss of the scalp.

Andropause treatment

Only about 5% of men in andropause with low testosterone levels receive testosterone replacement in the US. Part of this is explained by rumors that testosterone may cause prostate cancer or liver cancer. The patient or the physician may be reluctant to treat with testosterone. Bioidentical testosterone has been shown to not cause any harm. It is safe to use testosterone cream transdermally. It does not cause prostate cancer or benign prostatic hypertrophy.

An increase of 6-nmol/L-serum testosterone was associated with a 19% drop in all-cause mortality.

Testosterone helps build up new blood vessels after a heart attack. Testosterone replacement increases coronary blood flow in patients with coronary artery disease. Another effect of testosterone is the decrease of inflammation. Inflammation is an important component of cardiovascular disease.

Testosterone replacement improves exercise capacity, insulin resistance and muscle performance (including the heart muscle).

Apart from the beneficial effect of testosterone on the heart it is also beneficial for the brain. Testosterone treatment prevents Alzheimer’s disease in older men by preventing beta amyloid precursor protein production.

4. DHEA

Dehydroepiandrosterone (DHEA) is a hormone produced in the adrenal glands. It is a precursor for male and female sex hormones, but has actions on its own. It supports muscle strength. Postmenopausal women had a higher mortality from heart disease when their DHEA blood levels were low.

Similar studies in men showed the same results. Congestive heart failure patients of both sexes had more severe disease the lower the DHEA levels were. Other studies have used DHEA supplementation in heart patients, congestive heart failure patients and patients with diabetes to show that clinical symptoms improved.

5. Melatonin

Low levels of melatonin have been demonstrated in patients with heart disease. Melatonin inhibits platelet aggregation and suppresses nighttime sympathetic activity (epinephrine and norepinephrine). Sympathetic activity damages the lining of coronary arteries. Melatonin reduces hypoxia in patients with ischemic stroke or ischemic heart disease. Lower nocturnal melatonin levels are associated with higher adverse effects following a heart attack. Among these are recurrent heart attacks, congestive heart failure or death. Melatonin widens blood vessels, is a free radical scavenger and inhibits oxidation of LDL cholesterol. Melatonin reduces inflammation following a heart attack. This can be measured using the C-reactive protein.

In patients who had angioplasties done for blocked coronary arteries intravenous melatonin decreased CRP, reduced tissue damage, decreased various irregular heart beat patterns and allowed damaged heart tissue to recover.

6. Thyroid hormones

It has been known for more than 100 years that dysfunction of the thyroid leads to heart disease. Hypothyroidism can cause heart attacks, hardening of the coronary arteries and congestive heart failure. Lesser-known connections to hypothyroidism are congestive heart failure, depression, fibromyalgia, ankylosing spondylitis and insulin resistance. Some cases of attention deficit hyperactivity disorder (ADHD) with low thyroid levels may successfully respond to thyroid replacement.

Thyroid hormones improve lipids in the blood, improve arterial stiffness and improve cardiac remodeling following a heart attack. Thyroid hormones help with the repair of the injured heart muscle. They also work directly on the heart muscle helping it to contract more efficiently. Lower thyroid stimulating hormone (TSH) values and higher T3 and T4 thyroid hormone levels lead to improved insulin sensitivity, higher HDL values (= protective cholesterol) and overall better functioning of the lining of the arteries.

Dr. Smith said that thyroid replacement should achieve that

  • TSH is below 2.0, but above the lower limit of normal
  • Free T3 should be dead center of normal or slightly above
  • Free T4 should be dead center of normal or slightly above

Most patients with hypothyroidism require replacement of both T3 and T4 (like with the use of Armour thyroid pills).

7. Cortisol

Cortisol is the only human hormone that increases with age. All other hormones drop off to lower values with age. The adrenal glands manufacture cortisol. With stress cortisol is rising, but when stress is over, it is supposed to come down to normal levels. Many people today are constantly overstressed, so their adrenal glands are often chronically over stimulated. This can lead to a lack of progesterone. It also causes a lack of functional thyroid hormones as they get bound and are less active. When women have decreased estradiol in menopause there is a decline in norepinephrine production, production of serotonin, dopamine and acetylcholine. Women with this experience depression, lack of drive and slower thought processes.

Heart Health Improves With Hormone Replacement

Heart Health Improves With Hormone Replacement

Conclusion

Seven major hormones have been reviewed here that all have a bearing on the risk of developing a heart attack. It is important that these hormones are balanced, so they can work with each other. Hormones can be compared to a team that works together and is responsible for our health. If one or several of the team players are ineffective, our health will suffer. For this reason hormone replacement is crucial. Hormones have effects on mitochondria of the heart muscles cells. They stabilize the heart rhythm as in the case of estradiol. But they can also strengthen the heart muscle directly through DHEA and estrogens in women and DHEA and testosterone in men. Thyroid hormones are another supportive force for the heart and can even be used therapeutically in chronic heart failure patients. When people age, many hormones are produced less, but blood tests will show this. Replacing hormones that are missing can add years of active life.

Taking care of the symphony of hormones means you are taking care of your most important organ, the heart!

Incoming search terms:

Jan
21
2017

Effects Of Metformin On The Gut Microbiome

Matthew Andry, MD talked about the effects of metformin on the gut microbiome. This talk was delivered at the 24th Annual World Congress on Anti-Aging Medicine. The congress took place from Dec. 9 to Dec. 11, 2016 in Las Vegas. A lot of the sessions that I attended dealt with the gut flora and how it affects our health. This talk belongs to the theme of what a healthy gut microbiome can do for us.

History of metformin

Dr. Andry is a clinical associate professor of the Indiana School Of Medicine.

He pointed out that metformin has been used for a long time for type 2 diabetes, particularly, if fasting insulin levels are high. Metformin is a biguanide, which was isolated from French lilac (also known as Goats Rue). In the middle ages this herb was used to treat “thirst and urination”. In retrospect we recognize these as symptoms of diabetes. Chemists were able to synthesize the active ingredient in this herb in the 1920’s. Since then it is known as metformin. Dr. Jean Stern was able to show in the 1950’s in clinical studies that Glucophage, the brand name of metformin was able to reduce blood sugar without raising insulin levels. Between 1977 and 1997 metformin enjoyed wide spread acceptance for treating diabetics. Several clinical investigators demonstrated that diabetic patients on metformin lived longer and had less heart attacks than patients who were treated otherwise.

Metformin is the first-line drug in the treatment of type 2 diabetes in children and adults. It is one of the most widely prescribed drugs throughout the world with 120 million prescriptions per year.

Off-label use of metformin

There are many other clinical conditions for which metformin have been found to be beneficial. Polycystic ovary syndrome (PCOS), obesity, prediabetes, metabolic syndrome and nonalcoholic steatohepatitis are a few examples of off-label use of metformin. Metformin is also used as an anti-aging agent as it was found to elongate telomeres, which helps people to live longer. Metformin has been identified as a possible cancer prevention agent. In prostate cancer it was found to have an effect against prostate cancer stem cells. Without these cells prostate cancer does not recur after surgical removal.

Action of metformin

Metformin increases the action of an enzyme, AMPK, which leads to lipid oxidation and breakdown of fatty tissue (catabolism). In the liver the metabolic pathway of making sugar from fatty acids, called gluconeogenesis is inhibited. Metformin causes increased uptake of sugar into skeletal muscle tissue. This is the reason for the previously mentioned stabilization of blood sugar. Metformin has two beneficial effects on the liver. First it stabilizes insulin sensitivity. This means that a given amount of insulin has a larger effect on the liver. Secondly metformin decreases the toxic effect of fatty acids on the liver tissue. In other words metformin has a healing effect on non-alcoholic steatohepatitis, a precursor to fatty liver and liver cirrhosis. Metformin also has an effect on the appetite center in the brain. It helps many obese and overweight people, but not all to lose weight. The mechanism for that effect is in the hypothalamus, where the appetite center is located. The neuropeptide Y gene expression in the hypothalamus is inhibited by metformin leading to reduced appetite.

Finally, metformin also normalizes the gut flora. This last point was the main focus of Dr. Andry’s talk.

Metformin and the gut

An animal experiment on mice showed in a study published in 2014 that metformin was stimulating the growth of a beneficial gut bacterium, Akkermansia. This is a mucin-degrading bacterium. But it also affects the metabolism of the host. The authors found that metformin increased the mucin-producing goblet cells.

Akkermansia muciniphila bacteria were fed to one group of mice. This group was on a high fat diet, but not on metformin. The mice showed control of their blood sugars, as did the metformin group. In other words manipulation of the gut flora composition could achieve control of the diabetic metabolism. The authors concluded that pharmacological manipulation of the gut microbiota using metformin in favor of Akkermansia might be a potential treatment for type 2 diabetes.

Effect of metformin on the gut flora

Akkermansia muciniphila bacteria comprise 3%-5% of the gut flora. It does not form spores and is strictly anaerobe, in other words oxygen destroys it. This is the reason why it is difficult to take it as a supplement. It is mostly growing in the mucous of the epithelium layer of the gut. The highest number of Akkermansia bacteria is found in the colon, lesser amounts in the small intestine of all mammalian species including the human race.

Here are the effects of metformin on Akkermansia:

  • Metformin increases the Akkermansia bacteria count both in a Petri dish as well as in the gut of experimental mice. This suggests that metformin acts like a growth factor for Akkermansia.
  • Metformin increased the count of Akkermansia bacteria by 18-fold up to a maximum of 12.44% (up from the normal 3-5%) of all of the gut bacteria.
  • Researchers observed that the mucin layer of the lining of the gut in metformin treated mice was thicker. This suggests that the thickness of the mucin layer plays a role in increasing the Akkermansia count.

Effect of the gut on the body’s metabolism

Other researchers have investigated how a high fat diet can change the composition of the gut bacteria, which in turn are altering the body’s metabolism. Essentially a shift in the bowel flora can increase the gut’s permeability. This is called leaky gut syndrome. It leads to absorption of lipopolysaccharides (LPS) from bad bacteria in the gut. The end result is endotoxemia in the blood. This causes systemic inflammation in the body. Insulin resistance and obesity develop and this can be followed by type 2 diabetes. It is interesting to note that the effects of a high fat diet that led to these changes can be reversed by increasing Akkermansia bacteria in the gut or by treating with metformin.

An interesting mouse experiment showed that the changes that take place in the gut bacteria with cold exposure could be transferred to germ-free mice with no gut flora. This changed their metabolism proving that gut bacteria have profound influences on the metabolism. The fact that the gut bacteria have a profound influence on the metabolism is not only true for animals, but also for humans.

Akkermansia Facts

Here are a few facts about the Akkermansia bacteria.

  • The amounts of Akkermansia bacteria in the gut are inversely related to how fat we are. This is measured by the body mass index (BMI). Fat people have less Akkermansia in their guts.
  • A high fat diet lowers the amount of Akkermansia in the gut
  • Systemic inflammation is present with low Akkermansia counts
  • A high fat diet causes gut permeability (leaky gut syndrome).
  • Low levels of Akkermansia causes worsened severity of appendicitis and inflammatory bowel disease.
  • Low levels of Akkermansia causes fat storage (both in subcutaneous fat and visceral fat).
  • Low levels of Akkermansia cause insulin resistance (associated with diabetes) and high blood sugars.
  • Increased Akkermansia counts increase brown fat’s ability to burn calories, which leads to weight loss. Decreased Akkermansia counts lead to fat storage (weight gain).
  • Increased Akkermansia improves gut-barrier integrity
  • Increased Akkermansia reduces visceral and total body fat
  • Increased Akkermansia reduces synthesis of sugar in the liver (gluconeogenesis)

We have 10 times more bacteria in the gut than we have cells in our body. The Akkermansia percentage of the gut flora can be decreased from antibiotics or food that contains traces of antibiotics. If there is a lack of Akkermansia species, there is more gut permeability, causing LPS increase and causing increase of inflammation in the body. This translates into high blood pressure, heart attacks, strokes, and degenerative neurological diseases like Parkinson’s disease, Alzheimer’s disease or MS. But it can also cause inflammatory bowel disease and autoimmune diseases.

What increases Akkermansia?

We can increase Akkermansia bacteria in the gut by eating Oligofructose-enriched prebiotics. Oligofructose belongs into the inulin type soluble fibers. It is found in a variety of vegetables and plants. This includes onions, garlic, chicory, bananas, Jerusalem artichokes, navy beans and wheat. But wheat can be problematic. Clearfield wheat is the modern wheat variety which is now grown worldwide. It is much richer in gluten and can cause problems with gut permeability.

Eating lots of vegetables and fruit will give you enough of oligofructose to maintain a healthy percentage of Akkermansia in your gut bacteria.

Metformin as pointed out earlier can be used as pharmacotherapy. But it must be stressed that the use of metformin for dysmetabolic syndrome is off-label. There are real side effects of metformin. Lactic acidosis with an unusual tiredness, dizziness and severe drowsiness can develop. Also chills, muscle pain, blue/cold skin and fast/difficult breathing has been described. Slow/irregular heartbeat, vomiting, or diarrhea, stomach pains with nausea are also listed under side effects.

Effects Of Metformin On The Gut Microbiome

Effects Of Metformin On The Gut Microbiome

Conclusion

Our gut bacteria are important for us, more so than you may be aware of. An anaerobe bacterium, Akkermansia makes up 3%-5% of the gut flora. This bacterium lives in the mucous layer of the lining of the gut and ensures that the gut wall is tight. When these bacteria are lacking (due to consumption of junk foods) the gut wall becomes leaky, which is why this condition is called “leaky gut syndrome”. Irritating toxic substances can now leak into the blood stream and lipopolysaccharides are among them. This causes inflammation in the gut wall, but can go over into the blood vessels and the rest of the body including the brain. High blood pressure, obesity, diabetes, heart attacks, strokes, and degenerative neurological diseases like Parkinson’s disease, Alzheimer’s disease or MS can develop from the inflammation. But it may also cause inflammatory bowel disease and autoimmune diseases.

Eating lots of vegetables and fruit will give you enough of oligofructose to maintain a healthy percentage of Akkermansia in your gut bacteria. In particular, onions, garlic, chicory, bananas, Jerusalem artichokes and navy beans provide lots of oligofructose to support Akkermansia in your gut bacteria.

As pointed out earlier metformin can be used as pharmacotherapy of dysmetabolic syndrome. But it must be stressed that the use of metformin is off-label. It is also important to remember, that with effects there are side effects of metformin.

It may be news to you, how close the health of the gut is connected to our overall health. With the knowledge that food can be your medicine, choose your foods wisely. Add some or all of the above named foods that help you support beneficial gut bacteria, and take care of your health!

Incoming search terms:

Apr
02
2016

Women Win Turning Older

Supercentenarians may teach us something about the question “Why do women win turning older”? Supercentenarians are people who are 110 years or older. Presently there are 53 of them distributed over the world, 51 are females and two are males. According to Ben Dulken and Anne Brunet this is not by chance: in other mammal species females often live longer than their male counterparts. They theorize that stem cells live longer under the influence of estrogen and this may be the explanation for the difference. They wanted to answer the burning question: “Is life expectancy linked to gender and stem cells”?

Observations regarding why women win turning older

Ben Dulken and Anne Brunet describe that several pieces of evidence are important to note.

  1. Castrated males, called eunuchs, live on average 14 years longer than the average male.
  2. Experiments with male mice treated with estrogen increased their lifespan compared to untreated male controls.
  3. Neural stem cells (NSCs) and hematopoietic stem cells (HSCs) have estrogen receptors in females. This leads to extra stimuli during pregnancy, but also during the menstrual cycle in women or the estrus cycle in female mammals.
  4. It gets more complicated: There are non-estrogen regulated stem cell niches in the liver, skin and subcutaneous tissue (important for wound healing and resident muscle stem cells, called satellite cells (SCs). For some reason liver regeneration and wound healing, but also healing of muscle injuries in women and female mammals occurs at a faster pace. Scientists still do not have an answer for this. Theories are that perhaps women with their two X-chromosomes are at an advantage compared to males (only one X-chromosome) with respect to certain wound repair mechanisms.
  5. There is the question whether longevity and self-repair capacity would be related, either through stem cell populations (NSCs, HSCs, SCs), other repair mechanisms or tissue proliferation.
  6. There are gender differences in aging patterns of stem cells. For instance studies in dizygotic twins showed that telomere length of blood cells in the female twin was much longer than in the male twin. This is thought to be due to genetic factors other than hormones, but again favoring the female.
  7. A study in males showed that there is an accumulation of damaged DNA in SC’s of muscle tissue with older age that leads to muscle senescence. In older men there is a delayed response to a specific exercise stimulus with regard to the satellite cell division (SC) when compared to the response in young men.
  8. In females estrogen stimulates telomere growth of stem cells (NSCs and HSCs), which prevents premature stem cell exhaustion.

Effects of diet and exercise on life expectancy

The Potsdam study analyzed 4 healthy behaviors in 23,153 German participants aged 35 to 65 years over 7.8 years. They looked for the development of cancer, heart attacks, strokes and cancer as end points. The 4 healthy behaviors were: to be a lifelong non-smoker , having a body mass index lower than 30, performing 3.5 h/week or more of physical activity, and adhering to healthy dietary principles (high intake of fruits, vegetables, whole-grain bread and low meat consumption).

Those who had adopted all 4 healthy lifestyles reduced the development of serious disease by up to 80%. Dr. David Katz delivered a keynote address at the 22nd Annual World Congress on Anti-Aging Medicine in Las Vegas Dec. 10-14, 2014 entitled “Integrative Medicine: A Bridge Over Healthcare’s Troubled Waters”. He mentioned the Potsdam study. And he mentioned what the new logic of a healthy lifestyle is: a healthy lifestyle causes healthy telomeres of somatic cells and of stem cells; this causes health until a ripe old age.

Life Expectancy Linked To Gender And Stem Cells

Life Expectancy Linked To Gender And Stem Cells

Conclusion why women win turning older

It seems that women and female mammals are more protected by nature than males. The previously called ”weak sex” is in fact a lot stronger! This may be the reason that among supercentenarians there are only a few males remaining. But we don’t know how many males take the lifestyle factors of the Potsdam study serious. Males who want to age gracefully have to pay more attention to healthy lifestyles. This leads to longer telomeres and this allows for stem cell and somatic cell renewal. There are still many unanswered questions, but life expectancy is definitely related to how well we preserve stem cells throughout our body. This in turn depends very much on our lifestyle patterns.

Mar
19
2016

Book Review: “Healing Gone Wrong – Healing Done Right”, By Ray Schilling, MD

This book entitled “Healing Gone Wrong – Healing Done Right” (Amazon, March 18, 2016) is dealing with the practice of medicine then and now. Medical errors, false diagnoses and wrong treatments are nothing new in the history of medicine. It happened in the past, and it is happening now. My first book dealt with anti-aging and was entitled “A Survivor’s Guide to Successful Aging” (Amazon 2014).

Book overview

Chapter 1 describes that famous people like President Kennedy, Elvis Presley, Churchill, Beethoven or more recently Michael Jackson have something in common: all of them suffered the consequences of blatant medical mistakes. In Beethoven’s time lead containing salves to plug the drainage holes from removing fluid from his abdomen caused lead poisoning. In this chapter I review also how the illnesses of the above-mentioned celebrities were treated, but then ask the question: “What could have been done better to prevent some of the disastrous treatment outcomes?”

Chapter 2 deals with how modern drugs seem to come and go. We learn that twenty-first century medications that are touted as the latest therapeutic agents are having their potentially deadly consequences too: COX-2 inhibitors, the second generation of “improved” arthritis drugs cause strokes and heart attacks! Your doctor may still prescribe some of these dangerous drugs for arthritis now.

Chapter 3 deals with the fact that medical treatments for people’s diseases may be inappropriate when the doctor treats only symptoms, but nothing is done about the causes of their illnesses. This is a scary thought.

Chapter 4 asks the question whether we could learn something from these poor health outcomes in the past, so that we will be able to prevent any disastrous outcomes pertaining to our own health care in the present and future. As we will see, the problem today is still the same as it was in the past, namely that many physicians still like to treat symptoms instead of the underlying cause of an illness. Even though Big Pharma has the seducing concept of a pill for every ill, it is not always in your best interest, when these medications have a slew of side effects. “Gastric reflux” means a mouthful of stomach acid. This is a fact the suffering patient knows already! Big Pharma simply offers the patient with the symptom of gastric reflux a multitude of medications to suppress this symptom. But it is more important to dig deeper to find the reason for the illness and treat the underlying cause.

Chapter 5 concentrates on the brain and how we can keep our brains functioning optimally until a ripe old age. This review spans from prevention of head concussions to avoiding type 3 diabetes (insulin sensitivity from overconsumption of sugar). It manifests itself in Alzheimer’s disease. It is a form of diabetes of the brain that leads to deposits of a gooey substance. Prevention of this condition is also reviewed .

Chapter 6 reviews what we now know about how to keep a healthy heart. Certain ingredients are necessary such as regular exercise, a healthy Mediterranean diet, supplements etc. The good part is that what is good for the heart is also good for the brain. You are preventing two problems (brain and heart disease) at the same time.

Chapter 7 delves into the question why healthy food intake matters. Without the right ingredients of our body fuel, the body machinery will not work properly. The Mediterranean diet is an anti-inflammatory diet that is particularly useful.

Chapter 8 talks about healthy limbs, bones and joints. We are meant to stay active in our eighties and nineties and beyond. No osteoporosis, no joint replacements, no balance problems that result in falls! Learn about how to deal with problems like these in this chapter.

Chapter 9 deals with detoxification. What do we do as we are confronted with pollution, with radiation in the environment and poisons in our daily food? A combination of organic foods, intravenous chelation treatments and taking supplements can help us in that regard.

Chapter 10 deals with reducing the impact of cancer in our lives. A lot of facts have come out in the past 10 years telling us that reduction of sugar and starchy food intake reduces cancer. Curcumin, resveratrol and vitamin D3 supplements also reduce cancer rates as does exercise and stress management. All of this is reviewed here.

Chapter 11 checks out your hormone status. Women need to avoid estrogen dominance; both sexes need to replace the hormones that are missing. By paying attention to your hormonal status and replacing the missing natural hormones with bioidentical ones, most people can add 10 to 15 years of useful, active life!

Chapter 12 is refining some of the thoughts about anti-aging. You will learn about the importance to keep your mitochondrial DNA healthy. Apart from that there are ways how to keep your telomeres longer; certain supplements that are reviewed will help. Also your lifestyle does make a big difference in how old you can turn.

Chapter 13 investigates the limits of supplements. Many supplements are useful, but you do not want to overdo it and get into toxic levels. More is not necessarily better!

Chapter 14 reviews an alternative approach to treating ADHD. Attention deficit and hyperactivity disorder has been over diagnosed, has been neglected and has been over treated with dangerous drugs. An alternative treatment plan is discussed, which includes a combination of therapeutic steps.

Chapter 15 gives you a brief summary of the book.

Kirkus Review

Kirkus Reviews reviewed the book on March 17, 2016: “A retired physician details how various preventative measures can fend off disease and disability in this consumer health guide. Schilling (A Survivor’s Guide to Successful Aging, 2014) had a family medicine practice in Canada for many years before retiring. Although Schilling ventures into some controversial territory in his latest book, it’s generally an engaging, helpful synthesis of ideas that draws on reputable research from the Mayo Clinic and other sources. Overall, it serves as an intensely detailed wake-up call to the importance of preventative health. He largely brings an accessible and even-tempered tone to his narrative, warning readers, for example, that preventative health measures can only aid in “a delay of aging, not ‘eternal living.’ ” A thought-provoking, impassioned plea to be proactive about one’s health.”

Healing Gone Wrong – Healing Done Right

Healing Gone Wrong – Healing Done Right

Conclusion

In this book it becomes evident that it is better to prevent an illness whenever possible rather than to wait for illness to set in and cause disabilities or death. You heard this before: “Prevention is better than a cure” or “an ounce of prevention is better than a pound of cure”. I will give an explanation, based on scientific data that there is indeed evidence to support these notions on a cellular level. The mitochondria, the energy packages within our cells, are the driving force that keep people vibrantly healthy well into their nineties. All this can only happen when the mitochondria function properly. If the mitochondria are poisoned and as a result of toxins malfunction, we are not looking at a person with vibrant health. Instead sixty or seventy year-olds may be confined to a wheelchair. If you want a life without disabilities, a life without major illnesses and enjoy good health to a ripe old age, you are reading the right book.

The book is written in American English.

Available in the US: http://www.amazon.com/gp/product/1523700904

In Canada: https://www.amazon.ca/Healing-Gone-Wrong-Done-Right/dp/1523700904/  

In other countries the book is available through the local Amazon websites.