Sep
23
2017

Close Diabetes Control Prolongs Life

 

A 20-year study showed that close diabetes control prolongs life. A study divided 160 people with diabetes into two groups. The one group continued to get standard care. Yet the other group received a multi targeted, aggressive treatment protocol. As a result after 20 years the group with the intensive treatment protocol lived 7.9 years longer than the group with the standard treatment.

Dr. Oluf Pederson was the senior investigator of the physician team that followed the diabetes group. He said that they concentrated on a number of known adverse factors and treated them aggressively. These factors were first of all high blood glucose values and clotting risks, also high blood pressure and high triglycerides and in addition cholesterol values. Behavior modification was the therapeutic method to get people with risk factors to exercise more, adopt a healthy diet and stop smoking. Medication in select cases also played a role.

More details about the study

The intervention of intensive treatment lasted 8 years. After that the patients were still in a follow-up study for 13 years. At the beginning of the study patients were on average 55 years old and were borderline obese.

The investigation team screened for complications of diabetes. This included screening for kidney disease, heart disease and blindness. Dr. Joel Zonszein, the director of the New York Clinical Diabetes Center at Montefiore Medical Center said: ”These results are impressive and most patients do not receive the correct treatment, according to national surveys.”

Other studies about diabetes  

Foreign studies

Study from Croatia
  • Another study from Croatia involved 200 patients. It concentrated on patients who did not respond to metformin. Physicians used alternative treatment modalities, and they observed and measured blood sugars and hemoglobin A1C in the following 6 months. The study concluded that those patients who received aggressive treatment of their condition did better than those who did not receive the same vigorous approach.
Study from Japan
  • This Japanese study documented that female patients with type-2 diabetes developed kidney damage earlier than their male counterparts.  Consequently, the investigators pointed out how important it is to treat diabetes aggressively to avoid kidney damage.
Study from Singapore
  • This 2016 study from Singapore analyzed retroactively the impact of diabetes on the long-term survival after coronary bypass grafting (CABG).  5720 consecutive patients had their isolated first CABG surgery between 1982 and 1999. The mean follow-up was 13 years. 34.6% of the patients had diabetes, 51% had high blood pressure and 46.6% had elevated blood lipids. The initial mortality after the CABG surgery was 2.4% in the diabetic group and 1.8% in the non-diabetic group. 20-year survival rates following CABG surgery were 30.9% in diabetics and 49.2% in the non-diabetics, an 18.3% difference. The 20-year freedom from cardiac mortality rates was 56% in diabetics and 68.4% in non-diabetics. Other risk factors that led to cardiac mortality were the following: female gender (1.43-fold risk), diabetes (1.51-fold risk), previous heart attack (1.54-fold risk) and a low left ventricular ejection fraction of less than 35% (2.6-fold risk). The conclusion from this study was that long-term survival in diabetics following CABG surgery was much lower than that of non-diabetic controls. Hence the key to improving long-term survival for diabetics is to treat comorbidities like high blood pressure and elevated lipids aggressively as well as getting blood sugars and hemoglobin A1C values under control.

US studies

  • In this US study 558 youth (age less than 21) between February 2012 to July 2015 received follow-up. Between 40% and 50% of these diabetics needed insulin to improve their diabetes. Unfortunately their diabetes showed poor control, as their high hemoglobin A1C values indicated. Median HbA1C was 6.7%, 8.5%, 9.6%, and 9.7% in those with disease duration less than 1 year, 1-2 years, 2-3 years and less than 4  In other words, the longer the young patients had diabetes, the less seriously they took their treatment. Only 33% treated their high blood pressure and only 11% their elevated blood lipids. Microalbuminuria, an indicator of diabetic kidney disease, and non-alcoholic fatty liver disease were present in 5% to 6% of these young diabetic patients. The authors came to the conclusion that there were serious gaps in treating these young diabetics. Further follow-up data of the same group of patients in the coming years will provide further data. In conclusion, the new hemoglobin A1C ranges of 3.8% to 4.9% as the new normal range explains why these youths who do not treat their diabetes properly are at high risk to develop complications from their poorly controlled diabetes.
Heart attacks and erectile dysfunction
  • Heart attacks are more common among patients with uncontrolled diabetes. This US study classified diabetics according to the tightness of their diabetes control. Researchers found examining 606 men and 606 women with diabetes that they could reduce their risk of a heart attack, if they controlled smoking, glycated hemoglobin (hemoglobin A1C), systolic blood pressure, and total and high-density lipoprotein cholesterol. The control of all these risk factors could contribute to the prevention of heart attacks. 35% of men and 45% of women could prevent having a heart attack. A laxer control still would prevent 36% of heart attacks in men and 38% in women. A very aggressive diabetes control could prevent 51% of heart attacks in men and 61% in women. Most noteworthy: close diabetes control prolongs life.
  • Erectile dysfunction (ED) is a big problem among diabetic men. This study from Seattle shows the investigation of 136, 306 men with erectile dysfunction. 19, 236 of these men had diabetes prior to their ED problem. Over a two-year observation period diabetic men had much worse ED problems. As a result they needed to receive secondary line treatments  like penile suppositories or injectables. Others needed tertiary treatments like penile prostheses. In those whose diabetes control was good, oral agents as first-line therapies were usually sufficient.
More studies about risks and benefits of lifestyle
  • Middle-aged women with diabetes have a 4- to 5-fold higher risk for developing heart attacks while men do not show such a higher risk. It is probably particularly important for women to control diabetes when they are diagnosed with it to reduce the risk of coming down with a heart attack.
  • In 2011 Taylor from Newcastle University showed in a group of diabetes patients that he could cure diabetes permanently with an extremely low calorie diet. The trial was simple: he took overweight or obese patients with diabetes and put them on a starvation diet of 600-700 calories per day for 8 weeks. Consequently 43% of diabetic patients received a permanent cure of their diabetes. More info: http://nethealthbook.com/news/cure-diabetes-permanently/

 

Close Diabetes Control Prolongs Life

Close Diabetes Control Prolongs Life

Conclusion

The new hemoglobin A1C ranges that are desirable are between 3.8% to 4.9%. When diabetics bring their hemoglobin A1C level into this range, they do not get complications from their previously poorly controlled diabetes. Close diabetes control prolongs life. But as can be seen from a brief review of the literature physicians tend to be lax, patients are lax, and diabetes is often not well controlled. This leads to erectile dysfunction in males, to heart attacks and kidney failure in both sexes. Blindness and painful diabetic neuropathy are also common complications of poorly controlled diabetes. Amputations from clogged arteries are also among the complications. “Close diabetes control prolongs life” is the new mantra that everybody with diabetes needs to follow.

Lifestyle changes control diabetes and prolong life

As stated above Dr. Taylor from Great Britain has shown that a brief 600 to 700 calorie diet can cure 43% of diabetic patients permanently. Quit smoking, bring the glycated hemoglobin (hemoglobin A1C) into the normal range, control your systolic blood pressure as well as your total and high-density lipoprotein cholesterol. Do all these things, exercise regularly, and your diabetes will be well controlled. Remember: close diabetes control prolongs life!

Sep
02
2017

Resveratrol Effective In Humans

Resveratrol is a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

First of all, a 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage 1 hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension had a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Analysts divided both stage 1 and 2 subgroups into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years.

Blood pressure lowering effect of resveratrol

The purpose of the trial was to determine the effect of resveratrol.  added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gammaglutamyl transferase (Gamma-GT) were normal in the resveratrol group.

Resveratrol effective in humans: diabetes patients

Diabetes patients can get help with resveratrol. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. Another group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Furthermore, resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. The researchers gave resveratrol to a high group (1000 mg per day), a low group (150 mg) and the third group received a placebo (fake pills). The end point was an elevation of the bone alkaline phosphatase (BAP). The investigators measured this in the beginning of the study and at 4, 8 and 16 weeks.

Difference between high and low dose resveratrol

The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can serve as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

Finally, the Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is common knowledge for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

Important information from the Nurses’ Health Study 

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11 states enrolled in the study. In 1980 participants filled in diet sheets to determine who was adhering to a Mediterranean diet. The researchers accepted 4676 middle-aged participants in this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. They also consumed fish and lean meats. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres.

Slowed telomere shortening

The lead author Marta Crous-Bou stated that overall healthy eating was responsible for longer telomeres in comparison to the control group. But the strongest association was in women eating a Mediterranean diet in comparison to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Resveratrol lengthens telomeres

Longer telomeres associated with the lowest risk to develop chronic diseases and the highest probability of an increase of the life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. Research in humans supports the notion that an increase in physical activity elongates telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

In addition, this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol is also useful in combination with other cancer treatments, which improves survival figures. As the link above explains, there is a need for more cancer clinical trials with a variety of cancers and larger patient numbers. Many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

Resveratrol is anti-inflammatory

Also, in this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has anti-inflammatory qualities. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. Furthermore,  as this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study confirmed that it is resveratrol from red wine that is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Similarly, polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. Each of the subjects received 1500 mg of resveratrol or placebo daily for 3 months. Measurements showed a decrease of serum total testosterone by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%.There was a reduction of the fasting insulin level by 31.8%. At the same time there was an increase of the insulin sensitivity by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

Most noteworthy, a double blind, randomized, placebo-controlled study was done on 50 diabetics. Arterial stiffness was determined by the cardio-ankle vascular index (CAVI). The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

Finally, 56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. The researchers used bowel disease questionnaires to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group received 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. The hippocampus is the seat for short-term memory, which is not functioning normally in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. These combined anticancer properties make resveratrol a chemotherapeutic agent. It is also effective in combination with conventional anticancer drugs.

Resveratrol helps prevent hardening of arteries and cancer

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

Aug
05
2017

Death From Heartburn Drugs

A study was recently published showing that death from heartburn drugs can come early, when compared to controls. The study was published in June 2017 in the online British Medical Journal Open. The researchers were located at the Washington University School of Medicine, Saint Louis, Missouri, USA.

They compared 349, 312 US veterans on proton pump inhibitors (PPI) to an equal amount of veterans on conventional H2 blockers. Over a follow-up period of 5.71 years there was an increased risk of death of 25% when patients took PPI drugs. No matter to what the researchers compared the PPI group to, there were always more deaths in the PPI group versus other control groups.

Causes of death

According to the senior author, Dr. Ziyad Al-Aly many deaths were due to kidney disease, dementia, fractures, pneumonia, Clostridium difficile infections and cardiovascular disease. Out of 500 patients who took the PPI drug there was one death within one year. But over the years the deaths increased. Dr. Al-Aly thinks that the PPI drug is interfering in some way with the genetic expression of some genes and suppressing others. These genetic differences may explain the early deaths.

As this was a retrospective study, it can only show an association of PPI drugs with earlier deaths, but this does not prove causation. It would require a prospective random study to prove causation.

Other studies regarding the risk of PPI drugs

An Icelandic study from May 2017 showed that there was a 30% increased risk of fractures in males and females following PPI drugs when observed over 10 years. Opiates had a risk of almost 50%, sedatives a 40% risk of increased fractures. Control groups of NSAIDs, statins and beta-blockers showed no increased fracture risk, nor did histamine H2-antagonists.

Side effects of PPI’s

An article from March 2017 is a critical review of the safety of PPI drugs. It notices that with long-term use there are adverse effects like fractures of the long bones, enteric infections and hypomagnesemia. PPI’s can increase the risk for heart attacks and can cause kidney disease and dementia. One of the problems is that gastroesophageal reflux usually dictates the long term use of anti acid drugs like PPI’s, but the longer patients are taking these drugs, the higher the death rate and side-effect rate. The physician should only use PPI drugs initially and after a few weeks switch to the less potent histamine H2-antagonists (like ranitidine).

Listeriosis as side effect of PPI’s

A Danish study from April 2017 noted an increased risk for listeriosis in patients who were on PPI drugs. Over 5 years there was a 2.81-fold higher risk of developing listeriosis in patients on PPI’s compared to a control group. If patients were on corticosteroids and a PPI the risk was even higher, namely 4.61-fold increase to develop listeriosis. In contrast, using histamine H2-antagonists had a risk of only 1.82-fold of developing listeriosis.

Poor prescribing habits for PPI’s

Dec. 2016 study from Dublin, Ireland with patients older than 65 examined their PPI drug use. The comparison of data occurred between 1997 and for 2012. The researchers noted that the maximal PPI dose for long-term use was 0.8% of individuals in 1997 and 23.6% in 2012. The risk of prescribing high dose PPI drugs in 2012 was 6.3-fold in comparison to the risk in 1997. Examination of the health records showed that the indication for prescribing PPI drugs had no correlation with significant gastrointestinal bleeding risk factors. The study concluded that there was definitely room for improving prescribing habits.

Triple therapy

This January 2016 paper describes the standard treatment of H. pylori and gastric and duodenal ulcer treatment, which involves the triple therapy consisting of a PPI and two antibiotics. It pointed out that this treatment protocol “improves healing and prevents complications and recurrences”.

PPI’s causing risk for fractures

A paper from Leipzig, Germany dated July 2016 reviews the usage of PPIs. It mentions that there has been a significant increase of prescriptions in the past 25 years. Patients on PPI’ are at a greater risk for fractures. There is also a risk of low B12 levels from malabsorption of B12. The physician should check this from time to time, and if necessary give B12 injections.

Clostridium difficile infections

A Canadian study from May 2015 found that Clostridium difficile infections (CDI) were linked to chronic antibiotic use or to prolonged use of high doses of PPI drugs. There was a 1.5-fold risk of recurrent CDI in patients older than 75 years who were taking PPI drugs continuously. There was a 1.3-fold recurrence of CDI after antibiotic re-exposure.

Alternative remedies for heartburn

  • Dr. Weil recommends the use of deglycyrrhizinated licorice (DGL) for heartburn or early ulcers.
  • Here is a clinical study with 56 patients with duodenal and gastric ulcers that was published in 1968. Both radiographic evidence as well as clinical findings showed that the ulcers healed and that stomach spasms subsided with DGL treatment. Nobody knew at that time that DGL had antibacterial effects and that often chronic heartburn, stomach and duodenal ulcers can be due to H. pylori infections that are simultaneously present.
  • A December 2016 study showed that probiotics could be a valuable adjunct in triple therapy for H. pylori infection. The study also points out that H. pylori is present in about 50% of the world’s population.

Antibacterial effects of DGL

  • A paper of December of 2012 shows that an important tooth decay bacterium responds to DGL.
  • In a 1989 study 20 patients with aphthous mouth ulcers were followed. DGL mouthwash led to a 50 to 75% improvement in 15 patients within one day of treatment and by the 3rd day there was complete resolution.
  • Here is a suggestion of a four-step approach against H. pylori.
  • DGL has been shown to be useful in gut regeneration in patients with Clostridium difficile infection.

Discussion

I started with a review of a recent paper that pointed out the side effects of PPI drugs. PPI’s are common medications for acid reflux disease, stomach and duodenal ulcers, either alone or as part of the triple therapy. Chronic infection of H. pylori is often the cause of these problems. I reviewed the literature surrounding deglycyrrhizinated licorice (DGL), a natural antacid remedy. It turns out that DGL can be quite useful either as a parallel treatment or instead of the triple therapy.

The problem over the past 25 years is that physicians have been treating acid problems with higher and higher doses of PPI’s. They are also using ASA prophylaxis against heart attacks and strokes more often. This has caused gastric erosions that are bleeding, which in turn caused physicians to prescribe more PPI’s. The side effects of PPI’s belongs to the iatrogenic (doctor- induced) diseases. This is an artificial disease that occurs from the side effects of overprescribed medicine. PPI’s are a very useful short-term anti-acid medication. However, do not use this medication for more than 4 to 8 weeks. But as patients receive years and years of this medication, serious problems like heart attacks, fractures, kidney disease, dementia, and pneumonia as well as Clostridium difficile infections become the consequence. Overall there was an increase of the death rate of 25%.

It sounds quite reasonable that doctors should return to a more conservative approach as the FDA has suggested. This includes alternative natural methods including DGL and probiotics.

Death From Heartburn Drugs

Death From Heartburn Drugs

Conclusion

A recent study from the online British Medical Journal Open has pointed out a high death rate among long-term proton pump inhibitor (PPI) drug users. The se drugs are used to suppress acid formation in the stomach. They are helpful, if there are significant gastrointestinal bleeding risk factors present. But prolonged use of PPIs causes severe side effects as described, including a chronic persistent Clostridium difficile infection (CDI) of the gut that can become resistant to antibiotic therapy. In cases of recurrent CDI one important step is to discontinue PPIs. The physician should consider switching to one of the conventional histamine H2-antagonist drugs (like ranitidine). Overusing PPIs in an older population is not responsible, as this leads to disease that is caused by a physician! There is no need for this to happen.

Avoiding toxic drug levels of PPI’s

The prescribing physician has to exercise caution and restraint and the patients, and their loved ones need to be aware of multidrug interactions. PPIs belong to the drugs that are eliminated in the liver through the cytochrome P450 enzyme system (CYP2C19). But this enzyme system interfering with the drug elimination process may also eliminate other drugs taken by the patient. The end results can be toxic drug levels of PPIs. It can potentiate the side effects and become responsible for the 25% increased risk of death when the patient takes PPI drugs chronically. Even though PPIs are the newer medication, newer does not always mean better.

Jul
29
2017

Some Drink Milk, Others Are Lactose Intolerant

Some drink milk, others are lactose intolerant; this is the fact about drinking milk.

For a long time the dairy marketing board advertised with the slogan: “Got milk?”. But dairy milk consumption has declined over the past decades.

Why this is has been reviewed in this article. I like to review the problem of lactose intolerance, milk as a source of calcium to prevent osteoporosis and offer alternatives to milk consumption.

Lactose intolerance

Milk cows have been around in Europe for about 6000 years. But not everybody can tolerate milk products. Most of the Europeans, North Americans and Australians have adjusted the digestive enzymes in their duodenum to produce enzymes, called lactase that digest milk sugar (lactose) into glucose and galactose. But up to 75% of the world population (Africa, South America, Asia) is lactase deficient; they cannot tolerate dairy products. They get abdominal cramping, intestinal gas, bloating, diarrhea, nausea and vomiting from drinking a glass of dairy milk. This link explains why goat milk is better than cow’s milk for those who cannot tolerate cow’s milk.

It is also interesting that many people who are lactase deficient can tolerate cheeses, yogurt and other fermented milk products as the fermenting bacteria have digested the lactose.

Other problems with dairy products

Problems with mass production of dairy items are the following:

  • Concentrated Animal Feeding Operations (CAFO) are responsible for the majority of milk products on grocery market shelves. This means that the animals are fed unnatural corn, which leads to deficiencies and omega-6 fatty acids in the milk products.
  • Herds of animals receive antibiotics to prevent infections.
  • Farmers are administering bovine growth hormone (bST, bovine somatotropin) to stimulate more milk production. The antibiotics lead to superbugs in humans, the bST may be causing autoimmune diseases and breast cancer in humans. The healthiest milk is milk from grass-fed cows. It is high in omega-3 fatty acids. All of the milk products derived from this type of milk are also healthy.

Milk as a source of calcium

One key advertising slogan of the dairy industry used to be that milk would be such a good source of calcium, which would prevent osteoporosis. But milk also has a lot of animal protein in it, which acidifies blood. This means that the kidneys use calcium to neutralize acidic blood and excrete calcium. The net result is that there is more calcium leaving the body. Some of the calcium from the bone serves to keep the balance between acidity and alkalinity neutral.

This 12 year long Harvard Nurses’ Health Study involving 77, 761 women between the ages of 34 to 59 showed that a higher consumption of milk did not protect against hip and wrist fractures.

The myth that full fat milk causes heart attacks and strokes

There is another myth floating around, namely that full fat milk would be bad for the heart because of increased saturated fatty acids. But an Australian study showed that full fat milk is healthier for you than milk with less fat.

After 14.4 years of follow-up the group that consumed the most milk compared to the lowest fat intake group had a 69% lower death rate from cardiovascular disease!

A 2016 study showed that consumption of plain yogurt was associated with better health outcomes on the long term. Be more concerned about the sugar content than the fat content of yogurt!

Prevention of osteoporosis

For years numerous sources have indoctrinated us to accept a false concept. It is the concept of increasing milk consumption (“Got milk?”) for increased calcium intake and possible osteoporosis prevention. The sales mantra went like this: Milk-calcium-osteoporosis prevention. Now we know the real truth. Milk provides protein and calcium.  But  absorption of calcium is poor and the acidified blood is alkalinized through calcium from milk and from the bone leaking calcium into the blood and into the urine. The end result is a net loss of calcium from the bone, as it is more important to the body to keep the blood’s acid/base stable than to increase the calcium level in the bone. Sadly all the high consumers of milk from the Harvard Nurses’ Health Study ended up having fractures from osteoporotic bones.

Prevention of osteoporosis requires intake of vitamin D3, vitamin K2 and calcium (supplement or diet) as I have reviewed in this blog. In addition regular exercise is also very beneficial as is bioidentical sex-hormone replacement. It is interesting that a large clinical trial that I mentioned in this blog showed after 7 years that there were 35% to 38% less fractures of the hip than in the placebo group. Vitamin K2 is essential to keep calcium in the bones and to keep calcium out of the blood vessel walls. Vitamin D3 is important for calcium absorption through the gut wall and to deposit calcium into bone. Without all of these ingredients it is not possible to prevent osteoporosis.

Alternatives to cow’s milk consumption

  1. One obvious step is to replace cow’s milk by goat milk. As you can see from this link, there are many advantages to goat milk. What I find important is the fact that those with lactase deficiency often can tolerate goat milk while they would otherwise react to cow’s milk. There are also many goat milk products like cheese and yogurt, all of which are very healthy. They do not contain any antibiotics or bovine growth hormone (bST), the use of which is confined to cows. Goat milk products are also an excellent source of protein.
  2. You can eat a more vegetable-based diet. A lot of vegetables and fruit have calcium and protein in them.
  3. You can consume almond milk instead of cow’s milk. The downside to know is the fact that almond milk is not a significant source of protein. It has the advantage of being slightly alkaline; this will ensure that the calcium absorbed in the gut will reach the bones as long as you also supplement with vitamin D3 and vitamin K2. The many “fake milk” products such as rice milk, coconut milk and hemp milk are also poor protein sources. The only product higher in protein is soymilk. But soy has its own problems: over 90 % of the crop in North America is genetically engineered, and soy is a known allergen. As of recent, another product based on pea protein is available, and the protein content is excellent, so it is worth looking for it (It is called “Ripple”).
Some Drink Milk, Others Are Lactose Intolerant

Some Drink Milk, Others Are Lactose Intolerant

Conclusion

Drinking milk as a source of protein and calcium has become an obsession a few decades back. In the meantime it turned out that drinking milk tips the acid-base balance in the direction of acidity. This causes osteoporosis, as the kidneys excrete all of the calcium from milk that is absorbed. On top of that even more calcium is taken out from bones to recalibrate the acid-base balance.

Up to 75% of the world population is lactose intolerant. They get sick from drinking cow’s milk. But they usually tolerate goat milk quite well. Considering the fact that antibiotics are used in cow milk production and recombinant bovine growth hormone as well, I have joined the crowd that prefers goat milk instead of cow’s milk. I take the supplements I mentioned for bone maintenance (vitamin D3 and K2) and I get lots of calcium also from vegetables and salads. I have no lactose intolerance, but that’s my take on milk.

Incoming search terms:

Jul
01
2017

Advanced Glycation End Products (AGEs)

Advanced glycation end products (AGEs) form through cooking food at high temperatures. Sugar molecules react with proteins crosslinking them and changing how they function. It prevents proteins from doing their job. Glycation also causes inflammation, which damages mitochondria, the power packages inside cells that provide the body with energy. Overall AGEs lead to premature aging, which comes from the toxic protein reactions. Advanced glycation end products accumulate as glycated proteins in the tissues of the body. This leads to mitochondrial dysfunction.

Effect of advanced glycation end products (AGEs) on the body

The toxic effects of AGEs frequently occur in the following tissues.

  • The accumulation of AGEs can cause kidney disease and kidney failure (renal failure). In this case the kidneys no longer filter the blood to excrete waste. Hemodialysis may be necessary.
  • AGEs damager joint cartilage, so it can no longer handle stress and joint stiffness sets in. AGEs are now recognized as a major cause of osteoarthritis.
  • Cross-linked proteins from AGEs can cause Alzheimer’s and Parkinson’s disease. Damaged proteins accumulate in brain cells that disable and kill them eventually.
  • Glycation of LDL particles is an important cause of increasing the plaque formation in arteries by LDL. Glycated LDL is much more susceptible to oxidation than regular LDL. Oxidized LDL causes damage to the lining of the arteries and destroys endothelial nitric oxide synthase. This is a critical enzyme that maintains vasodilatation and blood flow. When glycation of LDL has set in, LDL receptors can no longer recognize it. This means that glycated LDL continues to circulate in the bloodstream where it contributes to the atherosclerotic process. It forms a plaque which becomes a reason for heart attacks and strokes. Glycation of LDL is particularly common in patients with diabetes.
  • Glycation of the skin sensitizes the skin to UV light damage. It triggers oxidative stress that increases the risk of skin cancer.
  • Glycation damages our eyes. It causes clouding of the lens (cataracts) and it damages the retina. Macular degeneration can ultimately cause blindness.
  • When glycation affects the discs in the spinal cord, this can cause disc protrusions and disc herniations. Injuries to the nearby spinal nerves can happen causing limping and leg or arm weakness.

Nutrients to counter AGEs

There are nutrients that can slow down the rate of glycation and as a result will halt the aging process.

Benfotiamine

Benfotiamine is a fat-soluble form of the water-soluble vitamin B1 (thiamine). It can reverse glycation in cell cultures and in humans.

As a result the damage to the cells that are lining arteries is reduced. Benfotiamine also counters diabetic neuropathy, retinopathy and nephropathy.

Pyridoxal 5’-phosphate

Pyridoxal 5’-phosphate is a metabolite of vitamin B6. It is similar to benfotiamine in that it counters glycation and dissolves deposited AGEs. It is particularly useful to stop fat and protein glycation. In diabetic patients lipid glycation is often a problem as these authors have shown. Pyridoxal 5’-phosphate traps glucose breakdown products before they become part of glycation reactions.

Carnosine

Carnosine is a dipeptide, made up of the amino acids histidine and beta-alanine. It is found in higher concentration in muscle and brain tissue. Carnosine scavenges for free radicals and prevents AGE formation. This prevents both lipid glycation and protein glycation. This publication states that carnosine can play a role in preventing Alzheimer’s disease. Carnosine prevents protein crosslinking. The result is that tangled protein clumps cannot accumulate and cause Alzheimer’s disease.

Carnosine also reduces blood lipid levels and stabilizes atherosclerotic plaques. This reduces the risk of plaque rupture, which can cause a heart attack or stroke.

Carnosine also has a mitochondria stabilizing function resisting the destructive effects of oxidative stresses.

Luteolin

Many plants contain luteolin, which is a bioflavonoid. It has anti-inflammatory effects and works by suppressing the master inflammatory complex, called NF-kB.  NF-kB triggers the production of multiple cytokines and is the cause of many cancers, chronic diseases, autoimmune diseases and septic shock. Kotanidou et al. did an experiment where they injected mice with Salmonella enteritis toxin, either with or without luteolin protection. Without luteolin only 4.1% of the mice survived on day 7. With luteolin protection 48% were alive on day 7.

Luteolin has been shown to be effective as an anti-inflammatory in the brain, the blood vessel lining, intestines, skin, lungs, bone and gums.

All these four supplements are available in the health food store. They work together and would be recommendable in diabetic patients where glycation is most prominent. But these supplements are also useful for older people who want to slow down the aging process in general.

Nutrients to slow down mitochondrial aging

Glycation causes mitochondrial deterioration and dysfunction. It accelerates aging in every aspect. AGEs (advanced glycation end products) crosslink proteins, lipids, but also damage enzymes and DNA. Glycation causes a slow down of mitochondrial energy production. The end result is a lack of energy and slower repair processes, which all depend on mitochondrial energy production. The following supplements have shown some merit in reversing this process.

Pyrroloquinoline quinone (PQQ)

PPQ is a supplement that is known to produce new mitochondria in cells. This helps the energy metabolism of aging cells to recover.

Taurine

Taurine is an amino acid that occurs abundantly in heart and skeletal muscles cells, brain cells and cells of the retina. These are areas in the body with high metabolic rates that can burn out mitochondria. Taurine regulates enzymes in mitochondria that harvest energy from food substances. In patients who experience accelerated aging, a lack of taurine can produce an energy crisis. But supplementation with taurine can rescue the cells by reducing oxidative stress and restoring the function of mitochondria in cells that are aging. Brain cells were putting out new shoots, called neurites when taurine was given as a supplement. This helps to improve brain connection, and preserves memory and cognition.

R-lipoic acid

R-lipoic acid helps to extract energy from foods and support mitochondrial function. When R-lipoic acid is given to aging animals, their metabolic function improves, the mitochondria become healthier and there are less oxidative stress-inducing byproducts. It protects their liver, heart and brain cells from oxidative stress in their mitochondria. It is becoming known as an energy-giving supplement.

Advanced Glycation End Products (AGEs)

Advanced Glycation End Products (AGEs)

Conclusion

Sugar overconsumption and overcooking food cause advanced glycation end products (AGEs) through lipid and proteins cross-linking. This leads to premature loss of organ function. The mitochondria are also slowed down. This creates premature aging. Fortunately there are a few supplements like benfotiamine, pyridoxal 5’-phosphate, carnosine and luteolin. They protect against glycation. Mitochondria can also be protected by PPQ, taurine and R-lipoic acid. Although we cannot stop the aging process, avoiding sugar and stopping to consume overcooked food, such as barbecued meats and deep fried food is a sensible step in prevention. Aging can slow down significantly with this approach and some supplements.

Incoming search terms:

Jun
10
2017

Dementia And Strokes From Diet Drinks

,You can get dementia and strokes from diet drinks. This is what a recent study published on April 20, 2017 in the American Heart Association Journals has shown. Because of the bad press around sugary drinks more and more people have switched to diet drinks. But the authors of this study have found a correlation of consuming diet soft drinks (with artificial sweeteners), dementia and ischemic strokes.

How was the study done?

The community-based Framingham Heart Study followed patients on diet soft drinks for 10 years. There were two age groups: mean age of 62 and mean age of 69. There were 2888 participants in the younger age group and 1484 participants in the older age group. Researchers observed the younger age group for strokes, the older for dementia. During the observation time there were 97 cases of stroke (82 of them ischemic) and 81 cases of dementia (63 due to Alzheimer’s disease). In comparison to the controls with no consumption of diet drinks, there was an increase of 296% of ischemic stroke and 289% increase of Alzheimer’s disease. This was the data consuming diet soft drinks for 10 years. Another control group had consumed sugar-sweetened beverages. They did not develop strokes or dementia (observation time too short). As can be seen under this link the popular press also reviewed the study.

What do we know about artificial sweeteners?

Here is a brief review of the most common sweeteners.

1. Saccharin

This sweetener’s history goes back to 1879 when the Russian chemist Constantin Fahlberg first noted experimenting with coal tar compounds that one of the end products, benzoic sulfanide, tasted sweet. In fact it was between 200 and 700 times sweeter than granulated sugar! But there were political struggles that accompanied this saccharin throughout the years. There were rumours that in rats saccharin could cause bladder cancer. The health authorities became concerned. This led to Congress passing the Pure Food and Drug Act in June of 1906, to protect the public from “adulterated or misbranded or poisonous or deleterious foods, drugs or medicines.”

The origin of the FDA

This was the precursor of the FDA that would examine all of the medical evidence and consider the pros and cons of sweeteners as well. President Roosevelt took saccharin for weight control to replace sugar. In 1908 Roosevelt felt he had to stop the actions of overzealous Dr. Harvey Wiley, chief of the U.S. Department of Agriculture’s chemical division who was of the opinion that saccharin should disappear from market. Dr. Wiley did not give up his fight and finally the FDA decided to ban saccharin in processed foods, but to continue to allow private sales of saccharin.

2. Cyclamate 

Cyclamate first appeared in 1937. The company marketed the sweetener initially to achieve better control of blood sugars in diabetes. Because of the reduction in sugar consumption it allowed diabetic patients to cut the amount of insulin required to control diabetes. Cyclamate did not have a bitter aftertaste, so in a marketing move the company mixed cyclamate with saccharine. The ratio was 10 parts of cyclamate to 1 part of saccharin , which resulted in the creation of “Sweet ‘N Low. In 1958 the FDA gave cyclamate the GRAS designation: “generally recognized as safe”. The good fortunes of cyclamate did not last long: in 1969 damaging animal experiments showed that cyclamate/saccharin had caused chromosomal breaks in sperm of rats. Another study from 1970 showed bladder tumors in rats. Other studies showed lung, stomach and reproductive tumors in animal experiments with cyclamates/saccharin.

History of Sweet N’ Low sweetener

The FDA wanted to shut down the sale of the Sweet N’ Low sweetener, but public pressure and the food processing industry forced the issue to be brought up in front of Congress. The compromise was to use a warning label: “Use of this product may be hazardous to your health. This product contains saccharin which has been determined to cause cancer in laboratory animals.” In the year 2000 and beyond researchers did several animal experiments. The data from Denmark, Britain, Canada and the United States on humans showed no signs of bladder cancer from exposure to Sweet N’ Low. In 2000 Congress removed the warning labels.

3. Aspartame 

The detection of aspartame occurred in 1965. James M. Schlatter, a chemist, was looking for anti-ulcer drugs, but noticed the intensely sweet flavor when he licked his fingers. This led to the newest sweetener by 1973. We know it by the trade names Equal, NutraSweet or Sugar Twin. As this sweetener consists two amino acids, phenylalanine and aspartic acid. The body metabolizes it except people with phenylketonuria, with certain rare liver disorders or pregnant women. High levels of phenylalanine occur in their blood, because they cannot metabolize aspartame properly. Any food made with aspartame has to carry that restriction on the label, a requirement by the FDA.

Problems with Aspartame

In 1996 W. Olney and his associates presented research that implied that Aspartame would have caused brain tumors in rats. But later these experiments were disproven and studies from children with brain tumors showed “little biological or experimental evidence that aspartame is likely to act as a human brain carcinogen.”

4. Sucralose

The history of sucralose goes back to 1976 when insecticide researchers looked for new types of insecticides. They found that chlorinated sugar worked as an insecticide. One of the researchers tasted sucralose and to his surprise it was very sweet. If you Google “Splenda and insecticide”, you have a hard time finding references regarding the history of sucralose, but 20 years ago I found a detailed description that explained how one of the chemists doing insecticide research accidentally tasted one of the research products, and it was about 600-times sweeter than table sugar.

Sucralose kills ants

Here is one of the few references that explains that sucralose was discovered while looking for new insecticides. I have repeated the insecticide experiment myself in Hawaii where small ants are ubiquitous. Out of curiosity I took a package of Splenda from a coffee shop and sprinkled the contents in the path of ants. In the beginning the ants were reluctant to eat it, but after a short time they came and took it in. They slowed down, and finally they were all dead. A few hours later the only thing visible were dead ants that were only 1/3 of their original size. This was proof enough for me that Splenda, which originates from insecticide research, is not suitable for human consumption.

Side effects of sucralose in humans

In the meantime Dr. Axe in the above references lists the side effects in humans: “Migraines, agitation, numbness, dizziness, diarrhea, swelling, muscle aches, stomach and intestinal cramps and bladder problems.” In the Splenda marketing scheme they decided to first introduce Splenda gradually into diabetic foods as a sweetener, then later sell it to the public at large. Don’t fall for it! It was a side product of insecticide research, and insecticides have the undesirable quality of being xenoestrogens, which block estrogen receptors in women. As a result estrogen can no longer access the body cells, including the heart. The final consequence for a woman is a higher risk for cardiovascular disease. This can cause heart attacks, strokes and cancer. In men estrogen-blocking xenoestrogens can cause breast growth and erectile dysfunction. Taken everything together Splenda seems to be too risky for its sweetness.

5. Other sweeteners

Other sweeteners researchers have not stopped looking for newer, better sweeteners. There is a number of sugar alcohols with less calories than sugar such as erythritol. Another common sugar alcohol is xylitol, used in chewing gum. The advantage is that these are natural sweet alcohols that exist in nature. Xylitol originated from birch wood and the general opinion was that it was useful to fight tooth decay. Manufacturers of chewing gum mixed xylitol into some of their products. Karl Clauss and Harald Jensen in Frankfurt, Germany detected another sweetener, acesulfame potassium, also known by the names acesulfame K, Ace-K, or ACK in 1967 when they experimented with various chemicals. This is known under the brand name “Sweet One”, but is often disguised in processed foods together with other artificial sweeteners to mimic the taste of sugar.

6. Stevia 

Stevia has been used for over 400 years, particularly in South America. It grows like a small bushy herb with leaves that can be taken to sweeten foods.  With modern, reliable extracting procedures (Sephadex column) it is possible to separate the bitter component of stevia and discard it leaving stevia behind without any bitter aftertaste. Stevia occupies 40% of the sweetener market in Japan. In Europe and North America there is a lot of competition with the above-mentioned sweeteners, mainly because of clever marketing techniques. The FDA gave stevia GRAS status in 2008.

What does sugar in soft drinks do?

Sugar is an emotional topic that can get people caught up in heated discussions. The sugar industry and the sugar substitute industry have also powerful lobby groups that provide the Internet and the popular press with conflicting stories to convince you to buy their product. There is good data to show that sugary drinks cause heart attacks, strokes and diabetes. Let’s not forget the metabolism behind the various sugars and starchy foods leading to fat deposits, high triglycerides and high LDL cholesterol.

Cut out sweets, cut out artificial sweeteners, but you can use stevia

Forget the emotions of severing yourself from your favorite fix.  Instead replace the familiar sweet taste you are used to from childhood on with stevia. At least this is what I do. The only alternative would be to take the plunge and cut out any sweet substance altogether, which I am not prepared to do. If you can do it, by all means go ahead. For more details regarding the effects of sugar and starchy foods read the blog under this link.

Dementia And Strokes From Diet Drinks

Dementia And Strokes From Diet Drinks

Conclusion

Diet soft drinks have become very popular. The reason is that studies in the past showed that sugary drinks can cause heart attacks and strokes. Now a new study revealed that diet soft drink consumption is associated with dementia and strokes. These drinks contained saccharin, cyclamate, aspartame or sucralose. They did not contain stevia, a natural sweetener because it is a natural, not a patented sweetener. It seems that companies’ profits are higher with chemical, patented sweeteners.

The problem with manufacturers and the FDA regulatory body

Looking back in time it seems perfectly legal that a company produces a chemical, patents it and sneaks it through the FDA channels for approval. The company then markets diet soft drinks turn out later to produce dementia and ischemic strokes in much larger studies. The FDA originally based their judgement on much smaller experiments for the initial approval. I have noticed that companies are now quietly introducing stevia, a natural sweetener to avoid potential legal problems down the road. Perhaps it is time to follow the Japanese lead where stevia is already occupying 40% of the sweetener market.

Incoming search terms:

Jun
03
2017

Fish, The Good And The Bad

I am going to review fish, the good and the bad. Fish can be very nutritious, because it contains a lot of healthy omega-3 fatty acids. But because of pollution it also has various degrees of mercury, PBC’s and other impurities.

I will discuss the good about fish oil first. Later we will learn that wild salmon is one of the best fish to eat, while we should avoid tuna due to mercury pollution.

The good about fish

Omega-3 fatty acids, also called marine oil, is an essential fatty acid. It balances omega-6 fatty acids of which we eat too much. Processed foods are full of omega-6 fatty acids, because they keep a long time on the grocery shelves without turning rancid. But when the omega-6 to omega-3 ratio is getting higher than 3:1 we are experiencing a problem. The body stimulates the arachidonic acid pathway, a metabolic pathway that produces inflammatory substances and arthritis. An old home remedy for arthritis is to use fish oil (cod liver oil). It changes the omega-6 to omega-3 ratio back to more normal levels, which can help arthritis patients. Early stage of arthritis can even heal.

Omega-6 fatty acids cause inflammation

Many processed foods contain only omega-6 fatty acids, because this is the cheapest way to produce them (they are based on vegetable oils). Instead of this you want to eat healthy fats like omega-3 fatty acids contained in nuts and fish. You can also add molecularly distilled, high potency omega-3 fatty acids (purified fish oil) as a supplement to help restore the balance between omega-6 and omega-3 in the food you eat. Corn oil, safflower oil, grape seed oil, soybean oil, cottonseed oil, canola oil and peanut oil contain omega-6 fatty acids. These are the ones that cause inflammation and disease. You must avoid them!

Omega-6 to omega-3 ratio

Compare the metabolism of omega-6 fatty acids with that of omega-3 fatty acids.

The linoleic acid of omega-6 fatty acids metabolizes into arachidonic acid, which causes pro-inflammatory mediators, PGE2 and LTB4 as shown in the metabolism link. On the other hand with omega-3 fatty acids alpha-linolenic acid (ALA) metabolizes into EPA, DHA and the anti-inflammatory mediators PGE3 and LTB5.

It is easily understandable why a surplus of omega-6 fatty acids from processed foods will disbalance the omega-6 to omega-3 ratio. This ratio should be 1:1 to 3:1, but many Americans’ omega-6 to omega-3 ratio is 6:1 to 18:1. Omega-6-fatty acids cause arthritis, heart disease and strokes. Be particularly careful avoiding soybean oil. It has become the most popular oil in the last few decades to foul up the omega-6 to omega-3 ratio. We consume it through processed foods and cooking oils.

Omega-3 supplements

When it comes to balancing omega-3 and omega-6 fatty acids in your diet, be aware that nutritional balancing can help you restore the ideal omega-6 to omega-3 ratio of 1:1 to 3:1. An easy way is to cut out processed foods as much as possible. Supplement with molecularly distilled fish oil capsules to add more omega-3 fatty acids into your food intake. Here is an example of rheumatoid arthritis patients that received omega-3 supplements. After 24 weeks their joint swelling and tenderness decreased significantly.

Rebalancing the omega-6 to omega-3 ratio was able to treat depression as this research showed. This makes you wonder how much depression may be caused by overconsumption of processed food.

Dr. Blatman suggested the following doses of omega-3 supplementation for various purposes:

  • 1 gram/day as supplementation for healthy adults with a good diet
  • 1-3 grams/day for people with cardiovascular disease
  • 5-10 grams/day for patients with an autoimmune disease, with chronic pain or with neuropsychiatric conditions

He mentioned that these doses are empirical, but in his experience this is what really works. Due to quality differences he suggested that you buy fish oil capsules in a health food store. Stay away from discount stores (the quality is the worst) and drug stores.

Other healthy oils are olive oil and coconut oil. They are also useful for cooking.

The bad about fish

1. Mercury and other pollutant

Pollution of the air, soil and rivers is causing accumulation of mercury and other heavy metals in ocean water.

This affects fish that live in the ocean. There is a pecking order of predators with the larger fish feeding on the smaller fish. The bigger the predator fish, the more mercury and other pollutants they accumulate. According to this link the safest seafood is wild salmon, pollock and oysters.

High mercury content of predator fish

Tuna is too high in mercury, so is swordfish, and shark is even worse. I only consume fish from freshwater lakes or rivers, as well as salmon, oysters and shrimp. This way I get the lowest exposure to mercury. Why is mercury bad for you? It is a neurotoxin. It can harm your brain, heart, kidneys, lungs and the immune system. Specific symptoms can include loss of peripheral vision and lack of coordination with balancing problems. There may be impairment of speech and hearing. The key is to avoid mercury exposure.

2. Rancidity of fish oil

Rancid fish oil contains free radicals that attack the lining of the arteries. There would be no point in taking fish oil, if it is rancid and destroyed what you want to protect. When you store fish oil, it can interact with oxygen and form lipid peroxides, which are free radicals. The Council for Responsible Nutrition’s quality standards monitors rancidity in fish oil. Get fish oil that meets or exceeds the Council’s standards. If you refrigerate fish oil, it stays fresh longer.

Managing mercury pollution

Smaller fish low in mercury

The first line of defense is to stick to the smaller fish. They are they prey of the large predator fish. The following fish/mussels belong into the low mercury group (alphabetical order): anchovies, catfish, clam, crab, crawfish, flounder, haddock, herring, mackerel, mullet, oyster, perch, pollock, salmon, sardines, scallops, shrimp, sole, squid, trout and whitefish.

Molecularly distilled omega-3 fatty acid supplements

You may want to supplement your omega-3 fatty acid intake by fish oil capsules. It is important that you choose the more expensive higher potency products. A molecular distillation process that removes mercury, PCB and other heavy metals creates these higher potency products. This way you only get the enriched omega-3 fatty acids in pure form. EPA and DHA in one capsule should be in the 900 mg to 1000 mg range, not less. I take 2 capsules twice per day as a daily supplement. This helps you as indicated above to balance the omega-6 to omega-3 ratio, which cuts down any inflammatory process in you.

More good news about omega-3 fatty acids

Omega-3 fatty acids have multiple anti-inflammatory effects. This helps for treating arthritis, osteoporosis, preventing heart attacks and brain shrinkage. Even depression can be influenced positively when krill oil and fish oil are both taken at the same time. It is best to think about krill oil and omega-3 fatty acids (fish oil) as complementary marine oils having multiple beneficial effects on the body. Studies have shown that arthritis and osteoarthritis improve with krill oil, but also with fish oil. Similarly, heart attacks and strokes are prevented with both krill oil and omega-3 fatty acids. It appears that both oils reduce inflammation in the arteries that is associated with high blood pressure, diabetes, obesity and metabolic syndrome in obese people. C-reactive protein measuring inflammation was reduced by krill oil up to 30% compared to placebo within 30 days. Patients with arthritis had 20% reduction in stiffness and pain.

More on krill oil

Krill oil is well absorbed into the brain and can prevent age-related brain shrinkage, preserve cognitive function and memory, prevent dementia and also possibly depression.

Other health conditions improve on both krill oil and omega-3 fatty acids like osteoporosis (in combination with vitamin K2, vitamin D3 and calcium), a weak immune system, diabetes, high triglyceride levels and cholesterol problems. Both marine oils prevent LDL cholesterol from being oxidized, which helps to prevent atheroma formation and hardening of the arteries. This prevents heart attacks and strokes.

Fish, The Good And The Bad

Fish, The Good And The Bad

Conclusion

Children received cod liver oil in the past to prevent rickets. In the 1960’s Dale Alexander wrote a book called “Arthritis and Common Sense”. Since then medicine has been revolutionized in the late 1990’s by the idea that inflammation in the body is responsible for high blood pressure, diabetes, heart attacks, strokes, arthritis and even Alzheimer’s disease. It is in this area that omega-3 fatty acids are an important supplement as fish oil capsules and krill oil capsules. These supplements can be bought molecularly distilled to be free of mercury and other pollutants.

Anti-inflammatory effect of omega-3 fatty acids

The anti-inflammatory effect of omega-3 fatty acids is a powerful preventative for all these diseases mentioned. It no longer is a question, whether these supplements work. It has become a fact backed up by large studies including mortality statistics. Even the FDA has included seafood into their food recommendations. The key is to rebalance your omega-6 to omega-3 ratio and incorporate marine oils in your diet. Your body will thank you for it with a longer, healthier life.

Apr
22
2017

Only Moderate Alcohol Consumption Benefits Your Heart

A new study from England finds that only moderate alcohol consumption benefits your heart. The study appeared on March 22, 2017 in Great Britain. 1.937 million people (51% women, 49% men) had participated in this investigation over 6 years. The lead author, Dr. Steven Bell is a genetic epidemiologist. He said that the purpose of this study was to clear up some of the confusion from previous studies. He wondered why the control group without alcohol exposure had more cardiac problems than the moderate group. It did make sense though, that the high alcohol group had worse cardiac problems.

But he and researchers from Cambridge University and University College London did this study to get more detail. They were curious why the current non-drinking group serving as a control did not undergo more scrutiny. It consisted of a mix of lifelong abstainers; people who drank formerly, but then gave it up. And the other group was those who drink on an occasional basis.

With this in mind the researchers designed their study. They also used larger numbers to increase the reliability of the study.

Details of English study

The data comes from the Clinical Practice Research Datalink providing anonymous patient records from general practices in England. The patients upon entry into the study had to be older than 30 years, but have no evidence of cardiovascular disease. A total of 1,937,360 patients qualified to be part of the study.

Based on patients’ records and patients recollections people, researchers looked at 5 classes of drinkers:

  • Non-drinkers (14.3%)
  • Former or ex-drinkers (stopped drinking at one point, 3.7%)
  • Occasional drinkers (drinking rarely, 11.9%)
  • Moderate drinkers (drinking within sensible limits, 61.7%)
  • Heavy drinkers (hazardous alcohol use, 8.4%)

Various cardiovascular diseases apart from heart attacks

The end point of the study researchers concentrated on the frequency of cardiovascular diseases like angina, heart attack, sudden cardiac death, stroke, peripheral arterial disease, abdominal aortic aneurysm and others. I only listed 6 of the 12 cardiovascular diagnoses as otherwise it would get too technical.

More information: Most study participants were non-smokers, their BMI was within normal limits, and they also did not have diabetes.

Findings of the study

There were significant differences among subclasses of alcohol consumption and the development of cardiovascular diseases over 6 years.

U-type dose response curve

The findings were in line with a number of previous similar studies that showed a U-type dose response curve between developing cardiovascular diseases and alcohol consumption. The group of non-drinkers (without former and occasional drinkers ) often had a 20% to 56% higher risk of developing cardiovascular disease, while moderate drinkers had no added risk.

Sudden cardiac deaths

On the other hand the heavy drinkers were at risk of developing cardiac arrest (50% increased risk) or heart failure (22% increased risk). A death from a sudden heart attack occurred in heavy drinkers with a 21% increased risk. A former drinker had a 40% increased risk for this, but a non-drinker a risk of 56% increased risk!

Smaller amounts of alcohol help to clean out arteries

A non-drinker had a 32% increased risk of getting a regular heart attack, a former drinker had a 31% increased risk, an occasional drinker 14%, a moderate drinker no added risk, and a heavy drinker had a 12% reduced risk! This seemed to show that drinking alcohol keeps the coronary arteries open and clean. I have had pathology demonstrations with Professor Dr. Adalbert Bohle at Tübingen University during my medical training in 1969. At that time he pointed out how clear and wide open the coronary arteries were in chronic alcoholics. It was not heart disease that killed those patients; they had died from end stage liver cirrhosis, and we saw pathological slides of that.

Strokes in heavy drinkers

Heavy drinkers get more ischemic strokes (33% risk increase) and more intracerebral hemorrhages (37% risk increase).

Lower leg arterial obstruction

Obstruction of blood vessels in the lower legs (peripheral arterial disease) is common with heavy drinkers (35% risk increase) and even former drinkers (32% risk increase). Non-drinkers have a 22% increased risk while moderate drinkers have a 0% risk (no increased risk).

Aortic aneurysms

There was no association between heavy drinking and aortic aneurysm. On the other hand, non-drinkers (32% increased risk) and former drinkers (23% increased risk) showed an increased risk of aortic aneurysm formation.

Other effects of alcohol consumption

The study above did not take into consideration that alcohol consumption has many other consequences beside cardiovascular effects. One for instance is the effect on the brain and the increase of serious car accidents. Another effect is the causation of cancer.

The American Cancer Society clearly states that alcohol consumption has been causatively associated with cancers in the following locations:

  • Mouth
  • Pharynx (throat)
  • Larynx (voice box)
  • Esophagus
  • Liver
  • Breast
  • Colon
  • Pancreas

The conundrum of alcohol benefit for heart attacks versus alcohol cause of cancer

Many studies have shown a dose-response curve between alcohol consumed and the development of these cancers. In other words there is never a safe low dose, below which no cancer risk would occur over time.

These authors conducted a metaanalysis of 16 prospective cohort studies including 6,300 patients. It showed that alcohol caused cancer of the colon and rectum. High intake of alcohol showed a 50% increased risk of causing colon cancer. With regard to rectal cancer the risk was 63% higher. In both cases the highest alcohol intake was compared to the lowest category of alcohol intake.

More on cancer risk from alcohol consumption

These authors concluded their discussion by pointing out that 6% of the worldwide cancer deaths are attributed to alcohol intake. They also stated that colorectal cancer risk increased by 50% in the heaviest alcohol users. Among the group of heavy drinkers the cancer death rate would likely be 9%. There would a reduction of mortality from cardiovascular disease by one third in middle and old age. The end result would be 6% mortality again; essentially there is no change.

No matter how you try to solve this equation, there is a risk of cancer deaths from exposure to alcohol. There is also a risk that heavy drinking can cause significant cardiovascular diseases mentioned.

Only moderate alcohol consumption benefits your heart

Only moderate alcohol consumption benefits your heart

Conclusion

Everything we do in life has consequences. With regard to drinking you know that accidents are more common in drinkers; with prolonged exposure to higher alcohol consumption you can get dementia. Moderate amounts appear to have significant protection from heart disease, but the risk for several cancers is not negligible. This point was not mentioned in the study I discussed in the beginning of my blog. In the latter part I included some data about cancer risks from alcohol consumption.

Heart attack prevention with small amounts of alcohol

The paradox remains that non-consumption of alcohol is associated with a significant cardiovascular risk because of a U-shape dose response curve. Moderate alcohol use is associated with the lowest cardiovascular risk. The question is whether we can balance moderate drinking with staying in the low cancer risk area. The recommendation of 1 glass of wine for women and 2 glasses of wine for men has been confirmed by the above study. This is considered a healthy preventative dose with respect to cardiovascular risk. It is the official recommendation for cardiovascular disease prevention. The cancer literature clearly states that there is a small cancer risk from moderate alcohol intake. This is particularly true for the 8 cancers discussed. The last word may not have been spoken yet about reduction of cardiovascular risk.

You can prevent heart attacks without the use of alcohol

Dr James Nicholls, the director of research and policy development at Alcohol Research UK had this to say. He pointed to the fact that there are other ways to prevent cardiovascular disease. For those who do not drink at present it would not make sense to take up drinking. You can strengthen your heart by starting a Mediterranean diet and starting to exercise regularly. The beneficial substance for your heart in red wine is resveratrol. Taken it as a supplement. Resveratrol has no side effects and does not have the cancer risk like an alcoholic drink does. Dr. Nicholls added, “If you drink within the existing guidelines it is unlikely that alcohol will either lengthen or shorten your life.” It is really up to every individual to balance the wine glass with personal health!

Apr
15
2017

What Foods Lower Insulin Resistance?

When people get diabetes or prediabetes, what foods lower insulin resistance? You may have heard that eating too many carbs and gaining weight can cause high insulin values. This causes the body’s insulin receptors to become sluggish, a condition called insulin resistance. Continuing to eat too many refined carbs leads to a critical point. You can suddenly run out of enough insulin and would develop type 2 diabetes at this time.

So, what foods lower insulin resistance?

Low glycemic food

Insulin resistance and type 2 diabetes occur because people do not pay attention to the glycemic load of the food they choose. Many people eat bread, pasta and starchy vegetables like potatoes. They also eat excessive sugary sweets, such as cupcakes, ice cream, or chocolate bars. All the pancreas can do is keeping blood sugar stable by overproducing insulin. But you can assist your pancreas to not overwork itself.

Leave the high glycemic index foods alone. Instead eat low glycemic foods like non-starchy vegetables (peppers, broccoli), lean meats, fish and nuts. Add high-fiber foods like beans and some whole grains. Eat foods rich in omega-3 fatty acids like salmon. Have a dessert with berries that are rich in antioxidants. Blueberries, strawberries, raspberries and black berries are all low glycemic foods, rich in vitamin C and antioxidants. They are “nature’s candy”.

Research on insulin resistance

In a study from Singapore differences of insulin sensitivity were found between lean Asian Indians and Chinese and Malays, living in Singapore. The Asian Indians had less insulin sensitivity, which means they had higher insulin resistance. This occurs because of a genetic variant of insulin sensitivity.

Another lengthy publication investigated the connection between metabolic syndrome and insulin resistance. In addition it examined the connection of heart attacks and strokes to wrong diets. The researchers pointed out that the percentage of diabetes and cardiovascular disease will reduce significantly on a sensible diet. How is this achievable? By adopting a healthy diet that also leads to weight loss.

Diets in the US and in the Western world have major shortfalls, due to the fact that people consume not enough vegetables, fruit and whole grains. Instead we see a higher intake of red and processed meat. In addition there was higher intake of sugar-sweetened foods and beverages. Refined grains and flour products are another unhealthy food source. In the US and other westernized countries we see an overconsumption of sodium and saturated fat.The key to a healthy diet was adopting a Mediterranean diet. A study exists where a group of patients with metabolic syndrome consumed mostly whole grains, vegetables, fruits, nuts, and olive oil. The control group simply followed a “prudent” diet.

What foods lower insulin resistance? The Mediterranean diet does!

Two years later the group on the Mediterranean diet showed the following results: they had a higher intake of monounsaturated fat (olive oil) and polyunsaturated fat (fish oil) and fiber. Their omega-6 to omega-3 ratio had decreased. The high-sensitivity C-reactive protein, a general measure for inflammation, had decreased. Other inflammatory kinins like interleukins had also decreased. The insulin sensitivity endothelial function score showed improvement. The important part overall was that the Mediterranean diet prevented the metabolic syndrome compared to the “prudent” control diet.

In 2018 a study from Spain was looking for positive effects when supplementing with olive oil or nuts. A Mediterranean diet with extra olive oil or extra nuts reduced the risk of heart attacks in a high-risk group compared to controls. The study included 7447 persons and these were the results after 4.8 years: the Mediterranean diet group that used more olive oil had 28% fewer cardiovascular events compared to the control group. The Mediterranean diet group with nuts had 31% less events. Heart attacks, strokes or death from cardiovascular disease were these “events”!

What foods are unhealthy?

In order to be able to avoid unhealthy foods it is important to identify what harms us. Foods to avoid are listed in this link. Sweetened beverages, fountain drinks, sodas and fruit juices contain loads of sugar. They will cause an insulin response and on the long-term insulin resistance. Avoid starchy vegetables, such as potatoes, pumpkin, corn, and yams. Also avoid processed snacks and boxed foods. Starchy foods break down into sugar, which also stimulates insulin release. Your no-food list continues with excessive sugary sweets, such as cupcakes, ice cream and chocolate bars. White bread, rice, pasta, and flour are also starchy, and the body breaks down starch into sugar and stimulates insulin production.

Some saturated fats are acceptable, but hydrogenated fat must be avoided altogether.

Epigenetic factors regarding insulin resistance

A recent publication on March 14, 2017 investigated the effect of exercise on insulin sensitivity in a mouse model where the mother mouse was obese.

Pregnant, obese mice were insulin resistant and the offspring came down with diabetes. But when the pregnant mice exercised, the insulin sensitivity came back to normal. In addition the offspring were not diabetic. This effect was not due to genetic factors. Instead the authors believe it was due to epigenetic factors, in this case treating insulin resistance with exercise. When the pregnant mother turns insulin sensitive, the offspring is programmed to regulate their blood sugar metabolism normally.

An April 2017 study from Korea investigated the effects of healthy nutrition on patients with metabolic syndrome and insulin resistance. They noted that avoiding unhealthy foods could normalize markers of disease.

The authors discuss how nutritional factors can contribute to inheritance of epigenetic markers in the next generation. They also showed how dietary bioactive compounds could modify epigenetic factors. Taking dietary components that regulate epigenetic factors contribute significantly to health. The authors concluded that a healthy diet could prevent pathological processes that otherwise would cause metabolic disease.

What Foods Lower Insulin Resistance?

What Foods Lower Insulin Resistance?

Conclusion

It is interesting to note that insulin resistance can be reversed into insulin sensitivity by eating healthy foods. Research papers are now describing how a healthy diet of the mother can affect her offspring positively. These effects are due to epigenetic factors, as genetic factors have not changed.

We are already hearing that diseases like heart attacks, high blood pressure, strokes, diabetes and others can largely be prevented by a proper diet. The key is to avoid high glycemic foods and eat low glycemic foods instead. It is not complicated. Eat non-starchy vegetables (leafy greens, peppers, broccoli), lean meats, fish and nuts. Add high-fiber foods like beans and some whole grains. Eat foods rich in omega-3 fatty acids like salmon. The end result is that insulin resistance disappears and metabolic processes return to normal. This was what Hippocrates had in mind when he stated “Let food be thy medicine and medicine be thy food.”

Apr
08
2017

Breast Cancer Risks

Dr. David Zava, PhD gave a talk on breast cancer risks. His presentation took place at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The detailed title was: “The Role of Hormones, Essential Nutrients, Environmental Toxins, and Lifestyle Choices on Breast Cancer Risk”.

He pointed out that both estrogens and progesterone are safe hormones, as long as the doctor does not overdose them and keeps a hormone balance. Unfortunately many women in menopause have too much estrogen on board as the ovaries are still producing them, but there is a lack of progesterone, the moderating hormone that makes estrogen safe.

In the following I am summarizing Dr. Zava’s talk with regard to the essential messages, but leave away much of the highly technical detail of the presentation. This would dilute the message of this blog. I will include a few links for those who wish to read more details about the topic.

Balance between estrogen and progesterone

Most of her life a woman is used to cyclical hormone changes between estrogen and progesterone. When a woman no longer ovulates in premenopause and menopause there is a surplus of estrogen and a lack of progesterone. Having no ovulation means that there is no corpus luteum developing, which is where in the past progesterone production took place. This creates a disbalance where estrogen is dominating; it is called “estrogen dominance”.

This is a dangerous hormone disbalance, because the breast ducts experience a growth stimulus, but the modifying, calming effect of progesterone is missing. Mixed into this is that the stress hormone, cortisol also can make the effect of estrogen worse. On the other hand Dr. Zava showed slides from studies documenting replacement of missing progesterone with a skin progesterone cream (percutaneous bioidentical progesterone cream).

Progesterone concentration in breast lumps after progesterone cream applications

Plasma and breast tissue concentration of progesterone were measured in 40 premenstrual women. The diagnoses were breast lumps and the physicians arranged surgery for them. One group received progesterone cream treatment for 10 to 13 days; the other group was the placebo group. At the time of surgery the plasma (blood) values of progesterone were the same, but progesterone levels in breast tissue were more than 100-fold higher than the values from the placebo group who had received a neutral skin cream. The same experiment also showed that progesterone reduced the number of proliferating epithelial cells (experimental progesterone group). Estrogen on the other hand led to an increase of the number of proliferating epithelial cells (placebo group).

Progesterone cream applied to breasts of premenopausal women

Another example that Dr. Zava gave was a study where 25 mg of bioidentical progesterone cream applied directly to breasts of premenopausal women increased breast tissue progesterone 100-fold, while blood concentrations of progesterone remained the same. Again progesterone decreased the breast stimulation by estrogen of normal epithelium cells.

How to measure progesterone levels

Dr. Zava who runs the ZRT laboratory spent some time to explain how to measure progesterone in a physiological way. He said that these experiments and others that he also projected tell a clear story. Blood (serum) progesterone levels do not adequately reflect what tissue levels in a woman’s breasts are. On the other hand saliva hormone levels do give an accurate account of what breast tissue levels are like. A woman received 30 mg of topical progesterone application. She then had hourly progesterone levels in the serum and in the saliva done. The serum progesterone levels remained at around 2 ng/ml, while the saliva progesterone levels peaked 3 to 5 hours after the application. It reached 16 ng/ml in saliva, which also represents the breast tissue progesterone level.

Blood progesterone levels are unreliable

As a result, Dr. Zava said that the important lesson to learn from this is not to trust blood progesterone levels. Too many physicians fall into this trap and order too much progesterone cream, which leads to overdosing progesterone. In contrast, with salivary progesterone levels you see the physiological tissue levels, with blood tests you don’t. Dr. Zava said: avoid using venipuncture blood or urine in an attempt to interpret hormone test levels, as you will underestimate bio-potency and overdose the patient.

Historical failure of estrogen replacement therapy (ERT)

A review of breast cancer would not be complete without mentioning the Women’s Health Initiative (WHI). The U.S. National Institutes of Health (NIH) initiated this trial in 1991.

Researchers prematurely terminated Women’s Health initiative

The WHI ended suddenly in July 2002. The authors stated: “The overall health risks exceeded benefits from use of combined estrogen plus progestin for an average 5.2 year follow-up among healthy postmenopausal US women.” The study found a 41% increase in strokes, 29% increase in heart attacks, 26% increase in breast cancer, 22% increase in total cardiovascular disease, a doubling of blood clots. The recommendation made by this study was to discontinue PremPro.

Breast cancer in the Million Women Study from synthetic hormones

Another study that was mentioned was “Breast cancer and hormone-replacement therapy in the Million Women Study”.  In this study postmenopausal women received HRT with synthetic hormones, either estrogen alone or estrogen mixed with a progestin (in British English “progestagen”). After 5 years estrogen alone had a 30% increased risk of developing breast cancer. HRT with an estrogen-progestagen mix had a 100% increased risk of developing breast cancer.

Huge difference between bioidentical hormones and synthetic hormones

Unfortunately in both of these human experiments the researchers used the wrong hormone substances, namely synthetic estrogens and synthetic progestins. They are NOT identical with natural estrogens and progesterone that a woman’s body makes. As long as the hormones used for hormone replacement therapy are chemically identical to the natural hormones, the body will accept them as they fit the natural hormone receptors in the body. It is the misfit of synthetic hormones that blocks the estrogen receptors or the progesterone receptors. You can readily see from the illustrations of this link that there is a fine balance between the workings of these receptors and there is absolutely no room for patented side chains that Big Pharma introduced into synthetic HRT hormones.

Individualizing bioidentical hormone prescriptions based on blood tests

The other problem of both these studies was that every woman was getting the same dose of hormones and that nobody measured their estrogen blood or estrogen saliva hormone levels. In retrospect the regulatory agencies should never have allowed these “hormones” to hit the market.

Breast cancer develops in three stages

Dr. Zava explained that it common knowledge for some time that breast cancer develops by going through 3 stages.

  1. Initiation

First of all, damage to the DNA of one of the cells types in the breast is what starts the process in the development of breast cancer. This can be done by catechol estrogen-3,4-quinones as was shown by these researchers.

Aromatase inhibitors is useful to reduce estrogen in overweight or obese women where aromatase is present in fatty tissue. The reason obese women have more breast cancer is likely from the extra estrogen production from androgens. Aromatase converts these male hormones from the adrenal glands into estrogen.

Iodine/iodide alters gene expression, which reduces breast cancer development, but also slows down cell division in existing breast cancer. The authors suggested to use iodine/iodide supplements as adjuvant therapy in breast cancer treatment.

  1. Promotion

Furthermore, the next step is that something has to promote the DNA mutation into becoming part of a cancer cell. Estrogen quinones are dangerous estrogen metabolites. They can form from catechol estrogens (other metabolites of estrogen) by reactive oxygen species. But selenium, a trace mineral can interrupt the formation of estrogen quinones, which stops the breasts cancer promotion process. A study from the Klang Valley, Malaysia showed that selenium showed a dose-response effect with respect to prevention of breast cancer; the more selenium in the food, the less breast cancer occurred.

  1. Progression (includes invasion and metastases)

Finally, several factors can help the breast cancer cells to progress, grow bigger locally and eventually move into other areas of the body as metastases. Dr. Zava showed several slides where details of metabolic processes were shown and how changes in some of these would lead to progression of breast cancer. Estrogen excess is a common pathway to breast cancer. The key is to balance it with progesterone, supplements, remove anything that causes estrogen overproduction like obesity (via the aromatase pathway).

The fallacy of overdosing or underdosing

When estrogen is overdosed, it becomes aggressive as indicated before; it can initiate DNA mutations that can cause breast cancer. If it is under dosed, the lack of estrogen can cause heart attacks, strokes and osteoporosis. When estrogen is balanced with progesterone a postmenopausal woman feels best and she is protected from the negative effects of estrogen.

Measures that help prevent breast cancer

Supplement only with bioidentical hormones

When supplementing with bioidentical hormones, keep estrogen within physiological limits and don’t overdose. This can be measured through blood tests or saliva hormone tests. Your most important natural opponent of estrogen is progesterone, which is usually missing in menopause. Measure hormones using tests (progesterone only with saliva tests, estrogen either by blood tests or saliva tests). Don’t rely going by symptoms.

Progesterone to estrogen ratio

Keep the progesterone to estrogen ratio (Pg/E2) at an optimal range, which is in the 100- to 500-fold range. Measure the saliva hormone level of both progesterone and estrogen and calculate. Remember that progesterone serum levels are meaningless. The much higher progesterone level protects the postmenopausal woman from estrogen side effects. Here is a statement worth noting: “Until evidence is found to the contrary, bioidentical hormones remain the preferred method of HRT.” This was the conclusion of a study using bioidentical hormones, where the protection from breast cancer and heart attacks and strokes was also noted.

Eat more fiber containing foods and less beef

Increase fiber intake and reduce red meat consumption. This will eliminate conjugated steroid hormones in the stool. It also increases the sex hormone binding globulin in the blood, which limits the bioavailability of estrogens. Fiber absorbs bile toxins and removes them from the body.

Calcium supplement

Calcium-D-glucarate is a supplement that will decrease beta-glucuronidase. The estrogens were conjugated with the purpose to be eliminated, but beta-glucuronidase causes the conjugated estrogens to be reabsorbed.

Reduce breast cancer risk with probiotics

Probiotics likely stimulate the immune system and help reduce the risk of breast cancer.

No pollutants and toxic chemicals

Avoid toxins like petrochemical pollutants and toxic chemicals. Avoid trans fats. If toxic, heavy metals are present (arsenic, cadmium, lead, mercury) remove these. Some naturopaths use EDTA chelation to do this.

Other useful supplements

Supplements: sulforaphane (broccoli), EGCG (green tea), alpha-lipoic acid (antioxidant), cruciferous vegetables, resveratrol, selenium and iodide/iodine, N-acetyl cysteine-glutathione. All these supplements/nutrients will prevent estrogen to go to the “dark side”. The dark side is the formation of toxic 4-OH estrogen that could further be converted into catechol estrogen-3,4-quinones that can damage DNA and cause mutations.

Methylation of catechol estrogens

Increase methylation of catechol estrogens: vitamin B1, B6, B12 and folic acid. Methyl donors also are useful for this purpose: MSM (methylsulfonylmethane), SAMe, and Betaine.

Healthy lifestyle (diet , exercise) helps your immune system

Improve your diet (Mediterranean type), exercise moderately, reduce stress, and replace hormones in physiological doses as discussed under point 1 and 2.

Breast Cancer Risks

Breast Cancer Risks

Conclusion

Dr. David Zava, PhD gave an interesting talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Estrogens, when unopposed by enough progesterone, can cause mutations in breast tissue of women and cause breast cancer. He also reviewed two major clinical trials that utilized hormone replacement therapy (HRT). The problems with these were the synthetic estrogen hormones that caused breast cancer and the synthetic progestins that also behaved like estrogens (not like progesterone) and caused even more breast cancer. The lesson from this is that only bioidentical estrogens and progesterone work in hormone replacement for menopause. Also, the hormones balance each other as discussed under measures that help to prevent breast cancer. In addition there was a list of other useful supplements given that can be taken to reduce the danger of breast cancer.