Feb
04
2017

Benefits Of The Ketogenic Diet

Dr. Jeff Volek, PhD, RD gave a talk that clarified the benefits of the ketogenic diet. He is a professor at the Department of Human Sciences at The Ohio State University, Columbus, OH, and teaches in the Kinesiology Program. His lecture was part of the 24th Annual World Conference on Anti-Aging Medicine in Las Vegas, Dec. 9 to 11, 2016.

There were 58 slides, some of them very detailed. I will summarize as best as I can what the presentation was all about.

History of diets

Dr. Volek stated that there were unintended consequences when the low fat/ high carb diet was introduced in the 1970’s and 1980’s. Ancel Keys, a physiologist had proposed in his diet heart hypothesis that saturated fat was the culprit that caused heart attacks.

As a result all major health agencies recommended the low fat/high carb diet. Obesity, diabetes, heart attacks, and strokes were the consequences. Another offshoot later from this was the statin craze where everybody was put on statins as high cholesterol was symptomatically treated. Nothing changed the diabetes and obesity wave and heart attacks and strokes continued to kill the affected persons. Among performance athletes the hypothesis was formed that carb loading would increase muscle performance. Researchers showed evidence that carb loading would improve performance. But athletes were dissatisfied with prediabetes and metabolic problems. Both the average consumer as well as the performance athlete noted that they felt better on a low carb/high fat diet. This is what the ketogenic diet is all about.

Diet heart hypothesis

With the diet heart hypothesis the saturated fat was removed from the diet and replaced by vegetable oils rich in linoleic acid. Dr. Volek explained that blood tests and other investigations were done on people who ingested the low saturated fat/high carb diet. The question was whether this would reduce heart attack rates and deaths by lowering serum cholesterol.

The Minnesota Coronary Experiment was a double blind study, which answered this question.

Cholesterol was reduced in the experimental group. But there was no reduction of heart attacks or strokes compared to a control group. Of concern was the large amount of refined carbohydrate content with the low fat diet. This essentially was responsible for the obesity and diabetes wave. The excess sugar turned into fat deposits and to insulin resistance, which caused diabetes. The low saturated fat/high carb diet of the 1960’s to 1990’s did not reduce heart attacks and strokes. To the contrary: the obesity/type 2 diabetes wave it had caused increased mortality from strokes and heart attacks further.

Laboratory tests on low fat/high carb diet versus the ketogenic diet

Forget hypotheses for a moment. Let us review what the different diets do in terms of lab tests. In a study where 40 overweight people with metabolic syndrome were put on a low fat diet or a low carb/ketogenic diet, the following blood test results were found. There were 20 patients in each group.

  1. Low fat/high carb diet

Triglycerides in the blood went down by 20%, saturated fatty acids by 22%. LDL (the bad cholesterol) rose by 4%. Insulin levels went down by 17% and leptin levels also down by 17%. Glucose levels were down by 1%.

  1. Low carb/ketogenic diet

Triglycerides went down by 52%, saturated fatty acids by 57%. LDL (the bad cholesterol) went down by 18%. Insulin levels went down by 49% and leptin levels by 42%. Glucose levels were down by 11%.

In this group of 20 subjects for each group the body mass index went down by 5% for the low fat diet and by 10% for the ketogenic diet after 3 months. The abdominal fat went down in that time by 12% for the low fat diet and by 20% for the ketogenic diet. The conclusion from these laboratory results and from the body measurements is that the low fat diet is showing some results of weight loss, but the ketogenic diet has superior results. The same is true for the blood tests. Only the ketogenic diet showed reduction of 7 key anti-inflammatory markers. In contrast, the low fat diet did not trigger the production of a single anti-inflammatory marker.

Anti-inflammatory benefits of the ketogenic diet

A 2008 study showed that several anti-inflammatory markers were greatly reduced from the ketogenic diet while a low fat diet did not show such a reduction.

As this 2009 study showed the LDL particles were getting bigger under the influence of a ketogenic diet, but they were getting smaller with a low fat diet.

Large LDL particles are also called pattern A particles, while small LDL particles are also called pattern B particles.

As this link shows there is good evidence that small LDL particles oxidize easier and are more atherogenic (causing hardening of the arteries). This means they lead to hardening of the arteries easier translating into heart attacks and strokes down the road. It is one thing that a ketogenic diet leads to larger LDL particles, which are more resistant to oxygenation. But it is another good thing that this diet is also anti-inflammatory. Overall this means that a ketogenic diet is counteracting the development of heart attacks and strokes.

Are saturated fatty acids in the diet causing heart attacks or strokes?

Dr. Volek discussed several large studies that have investigated this question. One of these studies discussed was a metaanalysis from 2010. Like all the other studies it showed that saturated fatty acids do not cause heart attacks and strokes. This is the secret behind the Inuit and the Eskimo diet. It is a high fat and meat diet. Lots of seafood is consumed as well, which provides omega-3 fatty acids.

Dr. Volek pointed out that if you replace a certain percentage, let’s say 5% of saturated fatty acids with carbohydrates, this would cause 7% more heart attacks. He showed literature evidence to back this up. What causes increased heart attacks and strokes is more refined carbs in your diet (sugar and starchy foods!).

Do saturated fatty acids in your blood increase the risk for disease?

Dr. Volek showed several slides with references to various publications. Elevated saturated fatty acids in the blood cause a higher risk of getting a heart attack, heart failure, metabolic syndrome and diabetes. But this does not happen with a ketogenic diet. The values of the saturated fatty acids in the blood are 4% lower when a ketogenic diet is started. With a low carb diet the calories derived from carbs are 12%. In comparison a low fat diet has 56% of carbs. Protein content in the low fat diet is 20%, in the ketogenic diet 28%. Saturated fat content in the low fat diet is 24%, in the ketogenic diet it is 59%. Let’s assume that both diets are kept at 1500 Cal. per day. Then the saturated fat content for the low fat diet is 12 grams and the carbohydrate content is 208 grams. For the ketogenic diet these values are as follows: 36 grams of saturated fat and 45 grams of carbohydrates. Despite a threefold higher saturated fatty acid intake the circulating level of saturated fatty acids in the blood were decreased by 4%.

You are what you eat, but go easy on carbs

Dr. Volek pointed out that what makes you healthy or sick is how many carbs you include in your diet. If you follow a ketogenic diet with only 12% carbs you are much better off than when you follow a diet like the low fat diet with 56% of carbs. The higher the carb percentage in your food, the higher the production of saturated fatty acids in your system and the higher the storage of saturated fatty acids in your body fat. Conversely, the lower the carb percentage in your food is the higher the oxidation of saturated fatty acids will be. In other words the saturated fatty acids disappear from your blood. Also, with a ketogenic diet the storage of saturated fatty acids is lower in your body fat. With a low fat diet your insulin resistance increases, while with a ketogenic diet insulin resistance decreases. The difference in calories in these two diets (56% derived from carbs in a low fat diet versus 12% derived from carbs in a ketogenic diet) explains why the obesity/type 2 diabetes wave has developed and why heart attacks and strokes still top the mortality figures today.

Endurance athletes win medals on a ketogenic diet

Dr. Volek shared a few cases of world-class athletes that are on a ketogenic diet. They did well for themselves winning medals. Tim Olsen won the Western States 100-mile endurance run from Squaw Valley to Auburn, CA in 2012. Zach Bitter was the 100-mile track record holder in 2015. Mike Morton won the American 24-hour distance running record for 172 miles. Two Tour De France bicyclists made first and second place, Chris Froome (first place) and Romain Bardet (second place).

Sports teams also have been successful on a ketogenic diet: the Columbus Crew soccer team; New Zealand national rugby union team, commonly called the All Blacks; the Los Angeles Lakers basketball team are all on ketogenic diets.

Dr. Volek also pointed out that the ketogenic diet has even been tested for the military. A ketogenic diet restores metabolic health, gives the soldiers more endurance, more stress resistance and decreased fatigue.

Benefits Of The Ketogenic Diet

Benefits Of The Ketogenic Diet

Conclusion

A ketogenic diet is on the one end of the carb spectrum with only 10 to 12% of calories derived from carbs. At the other end is the low fat/high carb diet that caused the obesity/diabetes wave. The Mediterranean diet is in the center. The more you are able to cut down the carb percentage in your diet by cutting out sugar and starchy foods, the more your metabolism gets stabilized and this can be measured with blood tests. The ketogenic diet makes you lose weight down to your ideal weight and makes you gain more muscle strength and physical endurance. Sophisticated blood tests have shown that inflammatory markers go down on a ketogenic diet and factors that lead to hardening of arteries also go down. The end result on the ketogenic diet is that the rate of heart attacks and strokes goes down, something which was the original goal of Ancel Keys. It did not work, but it promoted a wave of diabetes and heart disease! Ironically adding saturated fat and other healthy fats while cutting down carbs will achieve disease prevention. This is the opposite of what Ancel Keys had recommended to do and what the processed food industry has mimicked. The ketogenic diet lowers mortality by cutting down heart attacks and strokes. With this knowledge it will finally be possible to get people on a path to better health.

More information about ketogenic diet: https://www.dietdoctor.com/low-carb/keto

Incoming search terms:

Jan
28
2017

Cardiovascular Disease And Inflammation

Dr. Mark Houston talked about cardiovascular disease and inflammation – “the evil twins”. He presented this lecture at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Dr. Houston is an associate clinical professor of medicine at the Vanderbilt University Medical School in Nashville, TN 37232.

New thinking about cardiovascular disease and inflammation

Dr. Houston pointed out that the old thinking about cardiovascular disease has to be replaced with the new thinking. Here are a number of points regarding the new thinking.

  1. Coronary heart disease and congestive heart failure are diseases of inflammation. They are also coupled with oxidative stress, vascular immune dysfunction and dysfunction of the mitochondria.
  2. In the past it was difficult to reduce these cardiovascular diseases. With the new thinking there are now new treatment approaches that help cure cardiovascular disease.
  3. The development of heart disease has a long history. Endothelial dysfunction predates coronary artery disease by many years. This is followed by vascular smooth muscle dysfunction. Inflammation develops and structural changes occur in the small and larger blood vessels with atheromatous deposits (plaques) and final occlusion, at which point you get a heart attack.

Canadian physician Sir William Osler has already stated more than 100 years ago “A man is as old as his blood vessels”.

The old thesis was that cholesterol would lead to deposits that close coronary blood vessels and cause heart attacks. Dr. Houston called this the “cholesterol-centric “ approach. The truth is that with conventional blood tests you are missing 50% of all the high-risk patients that are going to develop heart attacks. They are missing the ones that have chronic inflammation, but normal cholesterol levels.

What was not known in the past was that oxidative stress associated with normal aging can lead to chronic low-grade inflammation. This oxidative stress leads to mitochondrial DNA changes. Associated with it are biochemical changes that cause chronic inflammation, which in turn will affect the lining of the arteries. There is a metabolic change described in the literature as metabolic syndrome, which leads to high blood pressure, hardening of the arteries and eventually heart attacks and strokes. The key today is to include in screening tests all parameters that will predict who is at risk to develop a heart attack or not.

Blood tests to screen for cardiovascular disease and inflammation

Blood tests and health history should be checked for dyslipidemia, high blood pressure (hypertension), hyperglycemia, smoking, diabetes, homocysteinemia, obesity etc. Also, patients with high GGTP (gamma-glutamyl transferase) levels in the blood are more at risk to develop diabetes. This in turn leads to inflammation of the arterial wall and heart attacks. There are 25 top risk factors that are associated with all causes for heart attacks.

Briefly, apart from the 7 factors already mentioned above the physician wants to check for high uric acid levels (hyperuricemia), kidney disease, high clotting factors (fibrinogen levels), elevated iron levels, trans fatty acid levels, omega-3 fatty acid levels and omega-6 to omega-3 ratio, low dietary potassium and magnesium intake with high sodium intake, increased high sensitivity C reactive protein level (hs CRP measuring inflammation). The list to test for cardiovascular disease risk continues with blood tests for vascular immune dysfunction and increased oxidative stress, lack of sleep, lack of exercise, subclinical low thyroid levels, hormonal imbalances for both genders, chronic infections, low vitamin D and K levels, high heavy metals and environmental pollutants.

The speaker stated that he includes a hormone profile and vitamin D levels. He does biochemical tests to check for mitochondrial defects. Micronutrients are also checked as cardiovascular patients often have many nutritional deficiencies. Inflammation is monitored through testing the levels of C-reactive protein (CRP).

In order to assess the risk of a patient Dr. Cohen, a cardiologist has developed the Rasmussen score, which is more accurate than the Framingham score.

The following tests are performed on the patient: computerized arterial pulse waveform analysis (medical imaging), blood pressure at rest and following exercise and left ventricular wall of the heart by echocardiography. Further tests include urine test for microalbuminuria, B-type natriuretic peptide (BNP, a measure of congestive heart failure), retinal score based on fundoscopy, intima-media thickness (IMT, measured by ultrasound on the carotid artery) and electrocardiogram recording (EKG).

Here is what the Rasmussen score means:

  • Disease score 0 to 2: likely no heart attack in the next 6 years
  • Disease score 3 to 5: 5% likely cardiovascular events in the next 6 years
  • Disease score > 6: 15% likely cardiovascular events in the next 6 years

Non-intervention tests to measure cardiovascular health

1. The ENDOPAT test

With this test the brachial artery is occluded with a blood pressure cuff for 5 minutes. Endothelial dysfunction is measured as increased signal amplitude. A pre- and post occlusion index is calculated based on flow-mediated dilatation. The values are interpreted as follows: an index of 1.67 has a sensitivity of 82% and specificity of 77% to predict coronary endothelial dysfunction correctly. It also correlates to a future risk for coronary heart disease, congestive heart disease and high blood pressure.

2. The VC Profile

This test measures the elasticity of the arteries. There is a C1 index that measures the elasticity of the medium and smaller vessels and the C1 index, which measures elasticity of the larger arteries and the aorta. The smaller the numbers are, the less elastic the arterial walls.

3.The Corus CAD score

This is a genetically based blood test. The score can be between 0 and 40. If the score is 40, there is a risk of 68% that there is a major blockage in one or more coronary arteries.

4. Coronary artery calcification

The CAC score correlates very well with major event like a heart attack. There is a risk of between 6- and 35-fold depending how high the CAC score is. The key is not to wait until you have calcification in your coronary arteries, but work on prevention.

Treatment of cardiovascular disease and inflammation

When heart disease is treated the doctor needs to address all of the underlying problems. It starts with good nutrition like a DASH diet or the Mediterranean diet.

Next anti-inflammatory and other supplements are added: curcumin 500 mg to 1000 mg twice a day, pomegranate juice ¼ cup twice per day, chelated magnesium 500 mg twice per day, aged garlic 1200 mg once daily, taurine 3 grams twice per day, CoQ-10 300 mg twice per day and D-ribose 5 grams three times per day. This type of supplementation helps for chest pain associated with angina. On top of this metabolic cardiology program the regular cardiac medicines are also used.

Additional supplements used in the metabolic cardiology program may be resveratrol 500 mg twice per day, quercetin 500 mg twice per day, omega-3 fatty acid 5 grams per day, vitamin K2 (MK 7) 100-500 micrograms per day and MK4 1000 micrograms per day. In addition he gives 1000 mg of vitamin C twice per day. This program helps in plaque stabilization and reversal and reduction of coronary artery calcification.

Case study showing the effect of metabolic cardiology program

Here is a case study of a heart patient that was treated by Dr. Houston. He was a white male, first treated for congestive heart failure as a result of a heart attack in June 2005. Initially his ejection fraction was 15-20%. His medications were: digoxin 0.25 mg once daily, metoprolol 50 mg twice per day, ramipril 10 mg twice per day, spironolactone 25 mg twice per day and torsemide 20 mg once daily. These medications were kept in place, but the metabolic cardiology program was applied in addition. Here are the results of his ejection fraction (EF) values after he was started on the metabolic program:

  • Initial measurement: EF15-20%. Marked shortness of breath on exertion.
  • 3 months: EF 20-25%. He reported improved symptoms.
  • 6 months: EF 25-30%. He said that he had now minimal symptoms.
  • 12 months: EF 40%. He had no more symptoms.
  • 24 months: EF 50%. He reported: “I feel normal and great”.
  • 5 years: EF 55%. He said” I feel the best in years”.

A normal value for an ejection fraction is 55% to 70%.

Cardiovascular Disease And Inflammation

Cardiovascular Disease And Inflammation

Conclusion

Testing for heart disease risk has become a lot more sophisticated than in the past, and the tests have opened up a window to early intervention. Metabolic cardiology is a new faculty of cardiology that assists in the reversal and stabilization of heart disease. It will help high blood pressure patients and stabilizes diabetes, which would otherwise have deleterious effects on heart disease. Metabolic cardiology improves angina patients. It also prevents restenosis of stented coronary arteries. As shown in one clinical example reduced ejection fractions with congestive heart failure will improve. This was achieved solely through the metabolic cardiology program.

As usual, prevention is more powerful than conventional treatment later. To give your cardiac health a good start, don’t forget to cut out sugar, exercise regularly and follow a sensible diet.

Incoming search terms:

Jan
21
2017

Effects Of Metformin On The Gut Microbiome

Matthew Andry, MD talked about the effects of metformin on the gut microbiome. This talk was delivered at the 24th Annual World Congress on Anti-Aging Medicine. The congress took place from Dec. 9 to Dec. 11, 2016 in Las Vegas. A lot of the sessions that I attended dealt with the gut flora and how it affects our health. This talk belongs to the theme of what a healthy gut microbiome can do for us.

History of metformin

Dr. Andry is a clinical associate professor of the Indiana School Of Medicine.

He pointed out that metformin has been used for a long time for type 2 diabetes, particularly, if fasting insulin levels are high. Metformin is a biguanide, which was isolated from French lilac (also known as Goats Rue). In the middle ages this herb was used to treat “thirst and urination”. In retrospect we recognize these as symptoms of diabetes. Chemists were able to synthesize the active ingredient in this herb in the 1920’s. Since then it is known as metformin. Dr. Jean Stern was able to show in the 1950’s in clinical studies that Glucophage, the brand name of metformin was able to reduce blood sugar without raising insulin levels. Between 1977 and 1997 metformin enjoyed wide spread acceptance for treating diabetics. Several clinical investigators demonstrated that diabetic patients on metformin lived longer and had less heart attacks than patients who were treated otherwise.

Metformin is the first-line drug in the treatment of type 2 diabetes in children and adults. It is one of the most widely prescribed drugs throughout the world with 120 million prescriptions per year.

Off-label use of metformin

There are many other clinical conditions for which metformin have been found to be beneficial. Polycystic ovary syndrome (PCOS), obesity, prediabetes, metabolic syndrome and nonalcoholic steatohepatitis are a few examples of off-label use of metformin. Metformin is also used as an anti-aging agent as it was found to elongate telomeres, which helps people to live longer. Metformin has been identified as a possible cancer prevention agent. In prostate cancer it was found to have an effect against prostate cancer stem cells. Without these cells prostate cancer does not recur after surgical removal.

Action of metformin

Metformin increases the action of an enzyme, AMPK, which leads to lipid oxidation and breakdown of fatty tissue (catabolism). In the liver the metabolic pathway of making sugar from fatty acids, called gluconeogenesis is inhibited. Metformin causes increased uptake of sugar into skeletal muscle tissue. This is the reason for the previously mentioned stabilization of blood sugar. Metformin has two beneficial effects on the liver. First it stabilizes insulin sensitivity. This means that a given amount of insulin has a larger effect on the liver. Secondly metformin decreases the toxic effect of fatty acids on the liver tissue. In other words metformin has a healing effect on non-alcoholic steatohepatitis, a precursor to fatty liver and liver cirrhosis. Metformin also has an effect on the appetite center in the brain. It helps many obese and overweight people, but not all to lose weight. The mechanism for that effect is in the hypothalamus, where the appetite center is located. The neuropeptide Y gene expression in the hypothalamus is inhibited by metformin leading to reduced appetite.

Finally, metformin also normalizes the gut flora. This last point was the main focus of Dr. Andry’s talk.

Metformin and the gut

An animal experiment on mice showed in a study published in 2014 that metformin was stimulating the growth of a beneficial gut bacterium, Akkermansia. This is a mucin-degrading bacterium. But it also affects the metabolism of the host. The authors found that metformin increased the mucin-producing goblet cells.

Akkermansia muciniphila bacteria were fed to one group of mice. This group was on a high fat diet, but not on metformin. The mice showed control of their blood sugars, as did the metformin group. In other words manipulation of the gut flora composition could achieve control of the diabetic metabolism. The authors concluded that pharmacological manipulation of the gut microbiota using metformin in favor of Akkermansia might be a potential treatment for type 2 diabetes.

Effect of metformin on the gut flora

Akkermansia muciniphila bacteria comprise 3%-5% of the gut flora. It does not form spores and is strictly anaerobe, in other words oxygen destroys it. This is the reason why it is difficult to take it as a supplement. It is mostly growing in the mucous of the epithelium layer of the gut. The highest number of Akkermansia bacteria is found in the colon, lesser amounts in the small intestine of all mammalian species including the human race.

Here are the effects of metformin on Akkermansia:

  • Metformin increases the Akkermansia bacteria count both in a Petri dish as well as in the gut of experimental mice. This suggests that metformin acts like a growth factor for Akkermansia.
  • Metformin increased the count of Akkermansia bacteria by 18-fold up to a maximum of 12.44% (up from the normal 3-5%) of all of the gut bacteria.
  • Researchers observed that the mucin layer of the lining of the gut in metformin treated mice was thicker. This suggests that the thickness of the mucin layer plays a role in increasing the Akkermansia count.

Effect of the gut on the body’s metabolism

Other researchers have investigated how a high fat diet can change the composition of the gut bacteria, which in turn are altering the body’s metabolism. Essentially a shift in the bowel flora can increase the gut’s permeability. This is called leaky gut syndrome. It leads to absorption of lipopolysaccharides (LPS) from bad bacteria in the gut. The end result is endotoxemia in the blood. This causes systemic inflammation in the body. Insulin resistance and obesity develop and this can be followed by type 2 diabetes. It is interesting to note that the effects of a high fat diet that led to these changes can be reversed by increasing Akkermansia bacteria in the gut or by treating with metformin.

An interesting mouse experiment showed that the changes that take place in the gut bacteria with cold exposure could be transferred to germ-free mice with no gut flora. This changed their metabolism proving that gut bacteria have profound influences on the metabolism. The fact that the gut bacteria have a profound influence on the metabolism is not only true for animals, but also for humans.

Akkermansia Facts

Here are a few facts about the Akkermansia bacteria.

  • The amounts of Akkermansia bacteria in the gut are inversely related to how fat we are. This is measured by the body mass index (BMI). Fat people have less Akkermansia in their guts.
  • A high fat diet lowers the amount of Akkermansia in the gut
  • Systemic inflammation is present with low Akkermansia counts
  • A high fat diet causes gut permeability (leaky gut syndrome).
  • Low levels of Akkermansia causes worsened severity of appendicitis and inflammatory bowel disease.
  • Low levels of Akkermansia causes fat storage (both in subcutaneous fat and visceral fat).
  • Low levels of Akkermansia cause insulin resistance (associated with diabetes) and high blood sugars.
  • Increased Akkermansia counts increase brown fat’s ability to burn calories, which leads to weight loss. Decreased Akkermansia counts lead to fat storage (weight gain).
  • Increased Akkermansia improves gut-barrier integrity
  • Increased Akkermansia reduces visceral and total body fat
  • Increased Akkermansia reduces synthesis of sugar in the liver (gluconeogenesis)

We have 10 times more bacteria in the gut than we have cells in our body. The Akkermansia percentage of the gut flora can be decreased from antibiotics or food that contains traces of antibiotics. If there is a lack of Akkermansia species, there is more gut permeability, causing LPS increase and causing increase of inflammation in the body. This translates into high blood pressure, heart attacks, strokes, and degenerative neurological diseases like Parkinson’s disease, Alzheimer’s disease or MS. But it can also cause inflammatory bowel disease and autoimmune diseases.

What increases Akkermansia?

We can increase Akkermansia bacteria in the gut by eating Oligofructose-enriched prebiotics. Oligofructose belongs into the inulin type soluble fibers. It is found in a variety of vegetables and plants. This includes onions, garlic, chicory, bananas, Jerusalem artichokes, navy beans and wheat. But wheat can be problematic. Clearfield wheat is the modern wheat variety which is now grown worldwide. It is much richer in gluten and can cause problems with gut permeability.

Eating lots of vegetables and fruit will give you enough of oligofructose to maintain a healthy percentage of Akkermansia in your gut bacteria.

Metformin as pointed out earlier can be used as pharmacotherapy. But it must be stressed that the use of metformin for dysmetabolic syndrome is off-label. There are real side effects of metformin. Lactic acidosis with an unusual tiredness, dizziness and severe drowsiness can develop. Also chills, muscle pain, blue/cold skin and fast/difficult breathing has been described. Slow/irregular heartbeat, vomiting, or diarrhea, stomach pains with nausea are also listed under side effects.

Effects Of Metformin On The Gut Microbiome

Effects Of Metformin On The Gut Microbiome

Conclusion

Our gut bacteria are important for us, more so than you may be aware of. An anaerobe bacterium, Akkermansia makes up 3%-5% of the gut flora. This bacterium lives in the mucous layer of the lining of the gut and ensures that the gut wall is tight. When these bacteria are lacking (due to consumption of junk foods) the gut wall becomes leaky, which is why this condition is called “leaky gut syndrome”. Irritating toxic substances can now leak into the blood stream and lipopolysaccharides are among them. This causes inflammation in the gut wall, but can go over into the blood vessels and the rest of the body including the brain. High blood pressure, obesity, diabetes, heart attacks, strokes, and degenerative neurological diseases like Parkinson’s disease, Alzheimer’s disease or MS can develop from the inflammation. But it may also cause inflammatory bowel disease and autoimmune diseases.

Eating lots of vegetables and fruit will give you enough of oligofructose to maintain a healthy percentage of Akkermansia in your gut bacteria. In particular, onions, garlic, chicory, bananas, Jerusalem artichokes and navy beans provide lots of oligofructose to support Akkermansia in your gut bacteria.

As pointed out earlier metformin can be used as pharmacotherapy of dysmetabolic syndrome. But it must be stressed that the use of metformin is off-label. It is also important to remember, that with effects there are side effects of metformin.

It may be news to you, how close the health of the gut is connected to our overall health. With the knowledge that food can be your medicine, choose your foods wisely. Add some or all of the above named foods that help you support beneficial gut bacteria, and take care of your health!

Incoming search terms:

Jan
02
2017

Gut Bacteria Can Protect Your Brain

The neurologist, Dr. David Perlmutter gave a keynote address where he pointed out that gut bacteria can protect your brain. The topic of his actual talk was “Rewrite your brain’s destiny” and the venue was the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Many of the talks centered around the gut microbiome. In this talk Dr. Perlmutter stressed the fact that the right mix of gut bacteria will protect your brain, while the wrong mix can make you sick. There were many slides, but too much information to mention all of details of the talk here. I will summarize the broad outline of Dr. Perlmutter’s presentation and emphasize the practical implications this has for everyday life to prevent degenerative brain diseases.

A few facts

  1. Did you know that the brain uses 25% of the body’s energy, but has only a 3% of the body’s weight?
  2. The gut flora has trillions of gut bacteria with its own DNA material. 99% of the DNA material in our body comes from the gut bacteria and the bacteria on our skin surface; only 1% of the entire DNA in the body is your own DNA. We are eating for 100 trillion bacteria, but if they are good bacteria they provide us with important vitamins and they produce molecules that stimulate our immune system.
  3. This means we better have bacteria in our guts that are friendly, not the bad bacteria that can cause us problems. An Italian study determined the gut flora of children in central Africa (Burkina Faso) and compared the gut flora to children from developed countries in Europe. There was a significant difference with the African children having a healthy microbiome in the gut and the children from developed Europe having unhealthy gut bacteria. This is important new information. Many other research papers have established that leaky gut syndrome and autoimmune diseases are linked to dysbiosis, which is the name for the unhealthy microbiome in the gut.

Chronic inflammation

Dr. Perlmutter showed several slides where literature was cited showing that chronic inflammation in the civilized world is increasing. He also showed that dysbiosis (unhealthy gut bacteria taking over) is also increasing. On several slides Dr. Perlmutter showed that in civilized countries like Iceland, Denmark, Germany, the US, Japan and others the bacterial diversity of the gut bacteria in people was vastly reduced compared to the diversity of gut bacteria of people in Kenya, Ethiopia, Nigeria or rural India. The same countries that have diminished gut bacterial diversity (dysbiosis) also have the highest prevalence of Alzheimer’s disease. On the other hand the same countries with diverse gut bacteria have a low incidence of Alzheimer’s disease. When infestation with parasites was examined there was also a parallel between increased parasitic stress and low Alzheimer’s disease rates, again in countries like Kenya, Ethiopia, Nigeria or rural India. The same countries where gut dysbiosis was present the parasitic infestation was low.

Further research has established that gut dysbiosis leads to an inflammatory condition of the gut where lipopolysaccharides (LPS) from gut bacteria are absorbed causing inflammatory reactions within the body.

At the same time this leaky gut syndrome can cause obesity and leakage in the gut/brain barrier as indicated in this link. The result is neuroinflammation, cognitive impairment and vulnerability to develop Alzheimer’s disease. Our most dreaded brain diseases come from inflammation: Alzheimer’s, Parkinson’s disease, autism, multiple sclerosis etc. These are degenerative brain disorders due to chronic inflammation. If you eat a lot of red meat, sausages and processed foods your gut microbiome will undergo negative changes. If you eat healthy food with lots of vegetables, fruit and you cut out sugar and too many starches, you have a healthy microbiome, which develops a robust immune system. We have to rethink the gut/brain connection and learn how to prevent these chronic illnesses.

Obesity and gut dysbiosis

In the link above it was shown that obesity is associated with inflammation. It was also shown with MRI scans that the part in the brain, called hippocampus was shriveled up (atrophied). This is a typical sign of dementia and Alzheimer’s disease. The investigators also confirmed with mental health functional tests that these patients had cognitive decline.

Another study also noticed that in a group of obese patients the hippocampus part of the brain was shriveled up the more obese people were. Obesity is associated with dysbiosis of the gut flora.

Practical application: the DASH diet and the Mediterranean diet are both healthy, balanced diets, strikingly different from the Standard American diet. In a study the hypothesis was tested whether the DASH diet and the Mediterranean diet would postpone dementia in a group of elderly patients. The answer was: yes, the hypothesis is true.

What does gut dysbiosis do?

It was shown in mice that chronic inflammation of the gut through ingestion of an irritant (dextran sodium sulfate) led to reduced new nerve growth in the hippocampus compared to control animals. It only took 29 days to show a marked difference between experimental and control animals in terms of reduced growth in the nerve cells of the hippocampus, the center of cognitive control.

The negative mediators were inflammatory kinins released from the gut wall and affecting the brain.

Antibiotic treatments and antibiotic residues in milk, milk products, meat, but also in all GMO foods are the irritants of the gut wall in humans. The antibiotics change the gut flora and lead to dysbiosis, which then causes gut wall inflammation and the cascade of events described above. The new finding is that GMO food contains RoundUp (they are “Roundup ready” crops). The herbicide Roundup was originally patented as an antibiotic and still leads to significant dysbiosis. Dr. Perlmutter urged the audience to buy organic food as the only method to reduce our exposure to Roundup. Roundup contributes to causing celiac disease and gluten intolerance in addition to exposure to the modern wheat (Clearfield wheat). The FDA is starting to do testing on foods for Roundup (glyphosate).

If things are sounding bad for Roundup, it only gets worse: Roundup has now been linked to causing cancer. In medicine it usually takes some time before definite action is taken. The agriculture industry is so deeply entrenched in the use of Roundup; I suspect that denial will be the first line of defense. My first line of defense in turn is to stick to organic food.

To sum up: Roundup and the Standard American diet lead to dysbiosis in the gut, which causes leaky gut syndrome. This causes inflammation with the release of cytokines and LPS from the gut wall to the blood. These substances cross the blood/brain barrier and lead to inflammation in the brain. This affects the hippocampus with the classical sign of shrinkage. But Parkinson’s disease, multiple sclerosis, autism in children and Alzheimer’s disease in older people are all caused by chronic inflammation. There are three more brain-related diseases that are related to gut inflammation: stroke, depression and attention deficit hyperactivity disorder (ADHD). Dr. Perlmutter spent some time explaining that antibiotic overuse even leads to an increase of breast cancer as a Danish study has shown. Antibiotic use showed a linear increase of breast cancer as a result of increased antibiotic amounts used. The highest group had a twofold risk compared to a control group with no antibiotic use. Dr. Perlmutter interpreted this to indicate that chronic gut inflammation can even cause a disease like breast cancer.

What can we do to diversify our gut bacteria?

  1. Exercise: A recent study has shown that regular exercise is associated with a diversified gut flora. The reason seems to be the production of butyrate with exercise, which leads to a diversified gut flora. There are reduced LPS levels (lipopolysaccharides from gut bacteria) in people with a higher fitness score.
  2. Eat a DASH diet or the Mediterranean diet as indicated above.
  3. Avoid GMO foods because of the presence of Roundup, which functions like an antibiotic and leads to gut bacteria dysbiosis.
  4. Remember “Antibiotics are weapons of mass microbial destruction”. If you need to take them be careful that you rebuild your gut flora with probiotics. Use of antibiotics increases the risk of type-2 diabetes by 1.53-fold. It also causes a quadrupling of Alzheimer’s disease.
  5. A woman should consider natural childbirth whenever possible, as with a vaginal birth the child is “anointed with gut bacteria”. Vaginally delivered children remain healthier than children delivered by Cesarean section for several years.
  6. Acid-suppressing medications and NSAIDs (anti-inflammatory medication for arthritis) can also lead to dysbiosis. Proton pump inhibitors increase the risk of Alzheimer’s disease by 44%.
  7. Prebiotic fiber can prevent Alzheimer’s. Probiotics do the same.
  8. Avoid sugar: even the Oompa Loompa knew that “If you eat sugar, you get fat” as this YouTube video shows. And obesity is associated with gut dysbiosis with the associated higher risk of degenerative brain diseases.
  9. Take magnesium supplements (250 mg twice per day) and DHA from fish oil capsules. It stabilizes your brain metabolism.
  10. In severe, persistent cases of gut dysbiosis a fecal transplant can be considered by your gastroenterologist. This procedure is done in more than 500 hospitals in the US.
Gut Bacteria Can Protect Your Brain

Gut Bacteria Can Protect Your Brain

Conclusion

The diversity of gut bacteria is immensely important. As discussed, in rural areas of the world there is gut bacteria diversity. In civilized parts of the world dysbiosis of the gut flora frequently occurs. This can lead to gut inflammation and the inflammation eventually gets internalized and can even reach the brain. These are the points to remember: exercise; avoid GMO foods, use prebiotics and probiotics. Avoid antibiotics; also avoid meat from animals that were fed antibiotics for faster growth. Don’t eat processed foods and avoid sugar. A healthy gut creates a healthy body, and this includes a healthy brain as well.

Incoming search terms:

Dec
31
2016

What Works Against Alzheimer’s?

Eli Lilly’s promising drug solanezumab failed; so, what works against Alzheimer’s? This drug was supposed to dissolve the amyloid deposits that function like glue and make the patients lose their memory. This phase 3 trial was to test the drug on patients to assess efficacy, effectiveness and safety. But instead it showed that the new drug did not stop the loss of memory.

Now all those who were hoping for solanezumab to be effective, will jump on another drug, aducanumab. Biogen from Cambridge, Massachusetts, has developed this drug. Out of 165 subjects only 125 completed preliminary studies. 40 patients who discontinued it, had negative side effects. These included fluid building up in the brain, which was thought to be due to removal of the plaques. But others, had brain bleeding.

Although the drug manufacturer is still hoping that aducanumab will work out as an anti-Alzheimer’s drug, I have my doubts. A drug that can have potential brain bleeding as a side effect does in my opinion not qualify as an anti-Alzheimer’s drug.

Factors that help prevent Alzheimer’s

1. Diet can be as effective as a drug in treating Alzheimer’s

In September 2015 researchers from Rush University published results of putting Alzheimer’s patients on the MIND diet. The MIND diet was a prospective study where 923 people aged 58 to 98 years participated. Researchers followed these people for 4.5 years. Three groups of diets were tested: Mediterranean diet, DASH diet and MIND diet.

The MIND diet study result

The adherence to the diet was measured: those who stuck to the diet very closely, another section of participants that were less diligent, and finally one segment of people who did not take the entire thing too serious. With regard to the MIND diet the group with the highest adherence to the diet reduced the rate of Alzheimer’s by 53% compared to the lowest third. This is like a highly effective Alzheimer’s drug! The second group still was able to reduce the rate of Alzheimer’s by 35%, which would be like a regular strength drug. The control diets were the DASH diet and the Mediterranean diet. The group that was strictly adhering to the DASH diet reduced Alzheimer’s by 39%, the group that was very conscientious in adhering to the Mediterranean diet reduced Alzheimer’s by 54%. The middle thirds of both control diets did not show any difference versus the lower thirds. The conclusion was that a strict Mediterranean diet had a very good Alzheimer prevention effect, as did a strict MIND diet. However, when patients did not adhere too well to a diet, the MIND diet was superior still yielding 35% of Alzheimer’s prevention after 4.5 years. The other diets, when not adhered to that well, showed no difference from being on a regular North American diet. Here is more info about the MIND diet.

Conclusion:

Avoid the Standard American Diet. Adopt a Mediterranean diet and stick to it in a strict fashion or adopt the MIND diet. The other benefit is that there are no side effects!

2. Stress and Alzheimer’s

2010 study from Gothenburg University, Sweden examined 1462 women aged 38-60 and followed them for 35 years.

Psychological stress was rated in 1968,1974 and 1980. 161 females developed dementia (105 of them Alzheimer’s disease, 40 vascular dementia and 16 other forms of dementia). The risk of dementia was reported higher in those women who had frequent/constant stress in the past and was more severe the more stress they were exposed to in the past. Women who were exposed to stress on one, two or three examinations were observed to have higher dementia rates later in life, when compared to women who were not exposed to any significant stress. Specifically, dementia rates were 10% higher when exposed to one stressful episode, 73% higher after two stressful episodes and 151% higher when exposed to three stressful episodes.

Conclusion:

Avoiding being stressed and seeking counselling when stress occurred could prevent Alzheimer’s.

3. Be creative, prevent Alzheimer’s and dementia

In an April 8, 2015 publication from the Mayo Clinic in Rochester, MN and Scottsdale, AZ 256 participants aged 85 years and older (median age 87.3 years, 62% women and 38% men) were followed for 4.1 years.

Mild cognitive impairment (MCI) was measured using psychological tests. At the time of recruitment into the study all of the tests for MCI were normal. As the study progressed it became apparent that there were various risk factors that caused the onset of MCI, which is the immediate precursor of dementia/Alzheimer’s disease. The finding was that the genetic marker APOE ε4 allele was associated with a risk of 1.89-fold to develop MCI and later Alzheimer’s disease. If there were current depressed symptoms present at the time of being enrolled into the study the risk of MCI development was 1.78-fold. Midlife onset of high blood pressure led to a 2.43-fold increase and a history of vascular diseases was associated with 1.13-fold higher MCI development. The good news was that four activities were associated with a lower risk to develop MCI with aging. When the person engaged in artistic activities in midlife or later in life the risk for MCI development was reduced by 73%, involvement in crafts reduced it by 45% and engagement in social activities by 55%. In a surprise finding the use of a computer late in life was associated with a 53% reduction in MCI development. These are very significant observations. This would be equivalent to highly effective anti-Alzheimer’s drugs.

Conclusion:

If you stimulate your mind in older age, even browsing on the computer this will help you to prevent Alzheimer’s disease.

4. Lifestyle factors contributing to Alzheimer’s

a) Sugar consumption: Sugar consumption and too much starchy food like pasta (which gets metabolized within 30 minutes into sugar) causes oxidization of LDL cholesterol and plaque formation of all the blood vessels including the ones going to the brain. On the long-term this causes memory loss due to a lack of nutrients and oxygen flowing into the brain.

b) Lack of exercise: Lack of exercise is an independent risk factor for the development of Alzheimer’s disease. Exercise increases the blood supply of the brain, strengthens neural connections and leads to growth of neurons, the basic building blocks of the brain. Exercise increases mood-regulating neurotransmitters like serotonin and endorphins.

c) Sleep deprivation leads to memory loss, but so does the use of aspartame, the artificial sweetener of diet sodas. Make your own homemade lemonade. Squeeze the juice of half a lemon. Add mineral water to fill an 8 oz. glass. Add a tiny bit of stevia extract for sweetening. Stir and enjoy. Stevia has been used for thousands of years.

5. Hormone changes

A lack of testosterone in men and estrogen in women interferes with cognition and memory. For this reason it is important after menopause and andropause (=the male menopause) to replace what is missing with the help of a knowledgeable health professional.

Progesterone is manufactured inside the brain, spinal cord and nerves from its precursor, pregnenolone, but in women it also comes from the ovaries until the point of menopause. Progesterone is needed in the production of the myelin sheaths of nerves and it has a neuroprotective function. In menopausal women bioidentical progesterone is a part of Alzheimer’s prevention.

Melatonin is a hormone, a powerful antioxidant and a neurotransmitter at the same time. It helps in the initiation of sleep, stimulates the immune system and protects from the toxic effects of cobalt, which has been found to be high in Alzheimer’s patients. In an aging person it is wise to use melatonin at bedtime as a sleep aid and to preserve your brain.

6. Genetic risk of Alzheimer’s

At the 22nd Annual A4M Las Vegas Conference in mid December 2014 Dr. Pamela Smith gave a presentation entitled ”How To Maintain Memory At Any Age”. She pointed out that there are about 5 genes that have been detected that are associated with Alzheimer’s disease and in addition the apolipoprotein E4 (APOE4). About 30% of people carry this gene, yet only about 10% get Alzheimer’s disease, which shows how important lifestyle factors are (in medical circles this is called “epigenetic factors”) to suppress the effect of the APOE4 gene. She also stated that our genes contribute only about 20% to the overall risk of developing Alzheimer’s disease. This leaves us with 80% of Alzheimer’s cases where we can use the brain nutrients and hormones discussed above and exercise to improve brain function.

7. Vitamin D3 protects your brain from Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative disease of old age. We know that it is much more common in patients with type 2 diabetes where insulin levels are high. Studies have shown that Alzheimer’s disease can be termed type 3 diabetes.

The resulting neurofibrillary tangles and amyloid-beta deposits damage nerve cells, which are responsible for the memory loss and the profound personality changes in these patients.

What does vitamin D3 have to do with this?

A 2014 study showed that a low vitamin D level was associated with a high risk of dementia and Alzheimer’s disease.

Specifically the following observations were made.

  • Vitamin D level of less than 10 ng/ml: 122% increased risk of Alzheimer’s
  • Vitamin D level 10 to 20 ng/ml: 51% increased risk of Alzheimer’s

The same research group found in two trials that vitamin D deficiency leads to visual memory decline, but not to verbal memory decline.

Generally supplements of vitamin D3 of 5000 IU to 8000 IU are the norm now. But some patients are poor absorbers and they may require 15,000 IU per day. What the patients need in the dosage of vitamin D3 can be easily determined by doing repeat vitamin D blood levels (as 25-hydroxy vitamin D). The goal is to reach a level of 50-80 ng/ml. The optimal level with regard to nmol/L is 80 to 200 (according to Rocky Mountain Analytical, Calgary, AB, Canada).

8. Avoid sugar overload

We already mentioned sugar consumption under point 4. But here I am mentioning it again because of the insulin reaction. An overload of refined carbs leads to an overstimulation of the pancreas pouring out insulin. Too much insulin (hyperinsulinemia) causes hormonal disbalance and leads to diabetes type 3, the more modern name for Alzheimer’s. All starch is broken down by amylase into sugar, which means that anybody who consumes starchy food gets a sugar rush as well. Too much sugar in the blood oxidizes LDL cholesterol, which leads to inflammation in the body. The consequence of chronic inflammation are the following conditions: hardening of the arteries, strokes, heart attacks, Alzheimer’s due to brain atrophy, arthritis, Parkinson’s disease and cancer.

What Works Against Alzheimer’s?

What Works Against Alzheimer’s?

Conclusion

In the beginning we learnt about a failed phase 3 trial regarding an anti-Alzheimer’s drug. Next we reviewed several factors that can all lead to Alzheimer’s and that have been researched for many years. It would be foolish to think that we could just swallow a pill and overlook the real causes of Alzheimer’s disease. I believe there will never be a successful pill that can solve the increasing Alzheimer’s problem. It is time that we face the causes of Alzheimer’s. This means cutting down sugar to normalize your insulin levels. We need to supplement with vitamin D3 because we know that it helps. For women in menopause or men in andropause it is time to replace the missing hormones with bioidentical ones. We need to handle stress and avoid sleep deprivation. And, yes we need to exercise regularly. Following a sensible diet like the Mediterranean diet or the MIND diet makes sense. And let us keep our minds stimulated. Chances are, when we do all of this; no Alzheimer’s pill will be needed. This is not good news for the drug companies, but will be very good news for you. Last but not least, there are no side effects, only health benefits!

Additional resource on how to preserve your memory.

Dec
17
2016

Magnesium Is Essential To Life

Magnesium is an important co-factor in many biochemical reactions, so magnesium is essential to life.

Many diverse diseases and cancers can develop from magnesium deficiency. The key is to supplement with magnesium regularly to get more than the government recommended daily allowance (RDA). The RDA for magnesium is 420 mg a day for males and 320 mg a day for females.

In the following I will review the diseases that occur without enough magnesium on board.

A lack of magnesium can cause heart disease

In this 2014 study 7216 men and women aged 55-80 with at high risk for heart attacks were followed for 4.8 years. The risk of death from a heart attack was found to be 34% lower in the high tertile magnesium group when compared to the lower magnesium tertile group.

The protective mechanism of magnesium was found to be as follows. Magnesium counteracts calcium and stabilizes heart rhythms. Magnesium helps to maintain regular heart beats and prevents irregular heart beats (arrhythmias). It also prevents the accumulation of calcium in the coronary artery walls. This in turn is known to lower the risk of heart attacks and strokes.

Another study, which was part of the Framingham Heart Study, examined calcification of the heart vessels and the aorta as a function of magnesium intake.

There were 2,695 participants in this study. For each increase of 50 mg of magnesium per day there was a 22% decrease in calcification of the coronary arteries. For the same increase of magnesium the calcification of the body’s main artery, the aorta, fell by 12%. Those with the highest magnesium intake were 58% less likely to have calcifications in their coronary arteries. At the same time they were 34% less likely to have calcifications of the aorta.

In a Korean study a group with low magnesium levels was at a 2.1-fold higher risk of developing coronary artery calcifications compared to a group with normal magnesium levels.

Low magnesium increases your stroke risk

In a 2015 study 4443 subjects, men and women aged 40-75 were followed along.

928 stroke cases developed. The group with the highest 30% of magnesium intake was compared with the lowest 10% of magnesium intake. They had significantly lower blood pressure (7 mm mercury) and lower total cholesterol levels. They also had 41% less strokes than those with low magnesium intake.

In a 2015 study that lasted 24 years the authors investigated 43,000 men.

Those with the highest magnesium supplement had a 26% lower stroke risk. They had been compared to those with the lowest magnesium intake.

Among women low magnesium levels were shown to cause 34% more ischemic strokes than in controls.

This study was from 32,826 participants in the Nurses’ Health Study who were followed for 11 years.

It is clear from all these studies that supplementation with magnesium can prevent strokes.

Magnesium protects kidney function

This study examined 13,000 adults for 20 years to see how kidney function was dependent on magnesium levels. Those with the lowest magnesium levels had a 58% higher risk of developing chronic kidney disease. It makes sense when you consider that magnesium is needed to keep arteries healthy, blood pressure low, and blood sugars stable. In diabetics where blood sugar is not controlled kidneys develop kidney disease. This is called diabetic nephropathy. In the presence of magnesium supplementation and a low sugar diet people are less likely to develop diabetes or kidney disease.

Magnesium helps blood sugar control

A metaanalysis showed that magnesium supplementation was able to improve blood sugar control. This occurred in both diabetics and borderline non-diabetics within 4 months of supplementing with magnesium.

Magnesium has been known in the popular press to be an important factor in helping control blood sugar. Here is an article as an example.

Magnesium good for bones and teeth

Magnesium is important for calcium metabolism and this is helping your bones and teeth to stay strong. About half of the body’s magnesium is stored in bone. Teeth are the other location where a lot of magnesium is found.

Low levels of magnesium lead to osteoporosis, because one of the two structural components of bone (calcium and magnesium) is missing. In addition low magnesium causes inflammatory cytokines to increase. These break down bones. The Women’s Health Initiative showed that when daily magnesium intake exceeded 422.5 mg their hip and whole-body bone mineral density was significantly greater than in those who consumed less than 206.6 mg daily.

With regard to healthy teeth magnesium is important as it prevents periodontal disease.

This study found that there was less tooth loss and there were healthier periodontal tissues in 4290 subjects between 20 and 80.

Those who took magnesium supplements had healthier teeth.

Migraine sufferers improve with magnesium

A double blind randomized study showed that magnesium supplementation can reduce migraines. In this trial 600 mg of magnesium supplementation was used for 4 weeks.

This reduced migraines by 41.6% in the magnesium group compared to the non-supplemented control group.

Another study showed that both intravenous and oral magnesium are effective in reducing migraine headaches.

Intravenous magnesium showed effects on improving migraines within 15 – 45 minutes. The authors concluded that both oral and intravenous magnesium could be added as a supplement to other migraine treatments.

Cancer can be caused from too little magnesium

You may be surprised to hear that magnesium can even prevent some cancers. Two cancers have been studied in detail. I will limit my discussion to these two.

Pancreatic cancer

One study found that pancreatic cancer was reduced. 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After 11.3 years on average 396 men and 469 women came down with pancreatic cancer. On the male side they found that when the body mass index (BMI) was greater than 25.0 there was a 21% reduction of pancreatic cancer for every 100 mg of added magnesium per day. There were a lot of smokers on the female side, which interfered with the study as confounding factors undermined statistical validity.

In another study, the US male Health Professionals Follow-up Study was examined after 20 years of follow-up. Those with a BMI of above 25.0 on magnesium supplementation had a reduced risk of pancreatic cancer. The pancreatic cancer rate in the higher magnesium group was 33% lower than in the lower magnesium group. The higher group consumed 423 mg of magnesium daily, the lower group 281 mg per day. It is significant that in both studies it was the heavier patients who came down with pancreatic cancer. It is known that obesity is a pancreatic risk factor.

Colorectal cancer

A study done on Japanese men showed that magnesium could protect them significantly from colon cancer.

Men who consumed the highest amount of magnesium developed 52% less colon cancer over 7.9 years. They were compared to the group with the lowest 20% intake of magnesium. The women in this study did not reach statistical significance.

A study from the Netherlands examined colon cancer in patients. They found that only in patients with a BMI of greater than 25.0 magnesium did have protective effects. For every 100 mg of magnesium per day increase there was a 19% reduction of colon polyps. And there was also a 12% reduction of colorectal cancer for every 100 mg increase of magnesium per day.

Magnesium plays an important role in genome stability, DNA maintenance and repair. It also prevents chronic inflammation and reduces insulin resistance, all factors contributing to cancer reduction.

Live longer with magnesium

Consider that magnesium is the fourth most common mineral in the body. Add to this that magnesium is a co-factor of more than 300 enzymes in the body. Magnesium is required as an important co-factor in the conversion of chemical energy from food that we ingest. Magnesium is regulating blood sugar, blood vessel health and our brain electrical activity. 50% of our stored magnesium can be found in our bones, which helps the strength and integrity of them.

Because of the distribution of the enzymes that are helped by magnesium to function properly, virtually every cell in the body depends on our regular intake of magnesium.

Since the 1950’s soils are depleted of magnesium where vegetables are grown and fruit trees are raised. We simply do not get enough magnesium from food.

But chelated magnesium is freely available in health food stores. Take 250 mg twice per day, and you will have enough.

Because our metabolism slows down, there is a critical age where magnesium deficiency becomes more obvious than when we are younger. By the age of 70 there are 80% of men and 70% of women who do not get the minimum of magnesium-required amount they should get (350 mg for men and 265 mg for women).

At this age many people are on multiple drugs. For many proton pump inhibitors (PPI) are used to suppress acid production in the stomach. PPI’s have been associated with low magnesium blood levels.

This link explains that PPI’s should not be used for longer than 1 year.

Low magnesium levels accelerate the aging process on a cellular level. Low magnesium levels increase senescent cells that can no longer multiply. Some of them could cause the development of cancer. These senescent cells also can no longer contribute to the immune system. This causes more infections with an adverse outcome.

Remember to take chelated magnesium capsules or tablets 250 mg twice per day and you will be protected from low magnesium levels in your body.

Here is why we live longer with magnesium supplementation

Our blood vessels will not calcify as early; they keep elastic for longer, preventing high blood pressure. Our kidneys will function longer with magnesium, preventing end-stage kidney disease. We need our kidneys to detoxify our system! The more than 300 enzymatic reactions all over our body help that we have more energy and that cancer is prevented. When there are fewer strokes and less heart attacks this helps reduce mortality. It also helps that there is less of a risk for Alzheimer’s disease with magnesium supplementation, because insulin resistance is reduced, which has been shown to prevent Alzheimer’s disease.

The bottom line is we live longer and healthier; that is what is meant with longevity.

Magnesium Is Essential To Life

Magnesium Is Essential To Life

Conclusion

Magnesium is a key essential mineral. It balances calcium in the body and participates in many enzymatic reactions in the body as a cofactor. As long as we have enough of this mineral we won’t notice anything. It is with magnesium deficiency that things go haywire. You could get heart disease or a stroke. You could get kidney disease. You even could get pancreatic cancer or colorectal cancer. If this is not enough, magnesium deficiency can cause diabetes, osteoporosis and bad teeth. You may suddenly die with no obvious cause. But, if your magnesium blood level is balanced from regular supplements, you will carry on living and eliminate a lot of health problems.

Incoming search terms:

Oct
22
2016

Arthritis Drugs Can Cause Heart Failure

The British Medical Journal has published a research articles in Sept. 2016 showing that arthritis drugs can cause heart failure. This occurs particularly in elderly patients around the age of 77 years and older. This is an age where arthritis is often causing pain, and the pain is regulated with over-the-counter pills. These anti-arthritis drugs belong into the group of anti-inflammatory drugs, called NSAIDs. This stands for “non-steroidal anti-inflammatory drugs”. The study was entitled “Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries…”

Arthritis drugs can cause heart failure shows study

Adult patients above the age of 18 who started 27 different types of NSAIDs between 2000 and 2010 were followed. 92,163 hospital admissions for heart failure were noted; 8,246,403 patients who were not taking NSAIDS served as controls. There were 4 countries involved in this study providing 2.2 million patients from the Netherlands, 7.5 million from Italy, 13.7 million from Germany and 11.1 million from the United Kingdom.

Results of study

NSAID use of up to 2 weeks prior to assessment had a risk of 19% of resulting in a hospital admission for heart failure. A control group of patients who had not taken NSAIDs for at least 6 months or more had no hospital admission risk.

Seven traditional NSAIDs were found to be associated with hospital admission for heart failure. They were: diclofenac (brand name Voltaren), ibuprofen (brand name Motrin), indomethacin (brand name Indocin), ketorolac (brand name Toradol), naproxen (brand name Naprosyn or Aleve), nimesulide (brand name Mesulid and many others), and piroxicam (brand name Feldene). In addition two COX 2 inhibitors, etoricoxib (brand name Arcoxia) and rofecoxib (brand name VIOXX) were also having the same side effects.

  1. The risk for heart failure was not the same for every NSAID. The risks ranged from 1.16-fold to 1.83-fold. Specifically ketorolac had a risk of 1.83-fold, indomethacin 1.51-fold, piroxicam 1.27-fold, diclofenac 1.19-fold, ibuprofen 1.18-fold, and naproxen 1.16-fold. Translated into common language it means that ketorolac had a risk of 83% of causing a hospital admission due to heart failure. In the case of ibuprofen it was only an 18% risk.
  2. The risk for heart failure doubled for diclofenac, etoricoxib, indomethacin, piroxicam, and rofecoxib when used at very high doses. Doubling the risk means a 200% risk. Typically, when an arthritis patient has a flare-up of pain, this is the time when the NSAIDs are usually taken at a higher dose and tend to also be taken for a longer time. Some NSAIDs had a significant risk for heart failure even at a medium dose. This was the case for indomethacin and etoricoxib. The good news was that celecoxib (brand names Celebrex and Celebra) at usual doses did not lead to an increased risk of heart failure.
  3. Dose-response curves were obtained where possible. Here the researchers looked at the effect of low, medium, high and very high doses of NSAIDs in patients. Again heart failure occurrence was studied among those patients. The result clearly showed that low and medium doses of NSAIDs were fairly safe, but high and very high doses of NSAIDs caused heart failure. Etoricoxib, Piroxicam and Rofecoxib were particularly toxic in higher doses. Indomethacin was toxic at medium and high doses. An important exception to the rule was celecoxib (brand names Celebrex and Celebra), which did not cause heart failure, either at low doses or high doses. This is one of the most used NSAIDs, so it is fortunate that it does not cause heart failure.

Discussion of study

The authors of this study discussed why they believe heart failure is developing in patients who take NSAIDs. They argued that NSAIDs inhibit prostaglandin synthesis and the enzymes COX1 and COX2. This is how inflammation and pain gets inhibited, which is a good thing. But at the same time blood supply to the kidneys is reduced, kidney function is impaired, and sodium is retained. This is a bad thing as it leads to fluid retention and fluid overload of the heart resulting in heart failure. As the prostaglandin inhibition is dose-dependent, the authors said this is the reason that the heart failure rate is also dose-dependent when measured in large populations, as was done in this study. A noted exception, as already mentioned, is the popular celecoxib, which does not cause heart failure, even at high and very high doses.

Arthritis Drugs Can Cause Heart Failure

Arthritis Drugs Can Cause Heart Failure

Conclusion

This publication has a lot of statistical power as it was based on research in 4 European countries and involved almost 10 million subjects that were compared to an equally large control population. Because of the size of the study population it was possible to calculate risk ratios for NSAIDs causing heart failure for 27 different types of NSAIDs. Furthermore, the authors succeeded in quite a few cases to calculate risk factors for different concentrations of NSAIDs used. This statistical method is called a dose-response curve. It is a powerful pointer to toxicity when high doses cause heart failure, but low doses don’t.

The physician can use the information from this publication to select one of the NSAIDs that is least harmful, like celecoxib (brand names Celebrex and Celebra) and tell the patient to use the least amount possible to minimize side-effects. Many aging arthritis sufferers will benefit from this. Hopefully the FDA will review this material and shut down the use of some of the more dangerous NSAIDs or force the manufacturer to attach a black box warning about the drugs that belong into this category. You should review what your favorite NSAID is and discuss this with your physician. Perhaps print a copy of this review and take it with you, in case your health provider has not heard about it yet.

Incoming search terms:

Mar
19
2016

Book Review: “Healing Gone Wrong – Healing Done Right”, By Ray Schilling, MD

This book entitled “Healing Gone Wrong – Healing Done Right” (Amazon, March 18, 2016) is dealing with the practice of medicine then and now. Medical errors, false diagnoses and wrong treatments are nothing new in the history of medicine. It happened in the past, and it is happening now. My first book dealt with anti-aging and was entitled “A Survivor’s Guide to Successful Aging” (Amazon 2014).

Book overview

Chapter 1 describes that famous people like President Kennedy, Elvis Presley, Churchill, Beethoven or more recently Michael Jackson have something in common: all of them suffered the consequences of blatant medical mistakes. In Beethoven’s time lead containing salves to plug the drainage holes from removing fluid from his abdomen caused lead poisoning. In this chapter I review also how the illnesses of the above-mentioned celebrities were treated, but then ask the question: “What could have been done better to prevent some of the disastrous treatment outcomes?”

Chapter 2 deals with how modern drugs seem to come and go. We learn that twenty-first century medications that are touted as the latest therapeutic agents are having their potentially deadly consequences too: COX-2 inhibitors, the second generation of “improved” arthritis drugs cause strokes and heart attacks! Your doctor may still prescribe some of these dangerous drugs for arthritis now.

Chapter 3 deals with the fact that medical treatments for people’s diseases may be inappropriate when the doctor treats only symptoms, but nothing is done about the causes of their illnesses. This is a scary thought.

Chapter 4 asks the question whether we could learn something from these poor health outcomes in the past, so that we will be able to prevent any disastrous outcomes pertaining to our own health care in the present and future. As we will see, the problem today is still the same as it was in the past, namely that many physicians still like to treat symptoms instead of the underlying cause of an illness. Even though Big Pharma has the seducing concept of a pill for every ill, it is not always in your best interest, when these medications have a slew of side effects. “Gastric reflux” means a mouthful of stomach acid. This is a fact the suffering patient knows already! Big Pharma simply offers the patient with the symptom of gastric reflux a multitude of medications to suppress this symptom. But it is more important to dig deeper to find the reason for the illness and treat the underlying cause.

Chapter 5 concentrates on the brain and how we can keep our brains functioning optimally until a ripe old age. This review spans from prevention of head concussions to avoiding type 3 diabetes (insulin sensitivity from overconsumption of sugar). It manifests itself in Alzheimer’s disease. It is a form of diabetes of the brain that leads to deposits of a gooey substance. Prevention of this condition is also reviewed .

Chapter 6 reviews what we now know about how to keep a healthy heart. Certain ingredients are necessary such as regular exercise, a healthy Mediterranean diet, supplements etc. The good part is that what is good for the heart is also good for the brain. You are preventing two problems (brain and heart disease) at the same time.

Chapter 7 delves into the question why healthy food intake matters. Without the right ingredients of our body fuel, the body machinery will not work properly. The Mediterranean diet is an anti-inflammatory diet that is particularly useful.

Chapter 8 talks about healthy limbs, bones and joints. We are meant to stay active in our eighties and nineties and beyond. No osteoporosis, no joint replacements, no balance problems that result in falls! Learn about how to deal with problems like these in this chapter.

Chapter 9 deals with detoxification. What do we do as we are confronted with pollution, with radiation in the environment and poisons in our daily food? A combination of organic foods, intravenous chelation treatments and taking supplements can help us in that regard.

Chapter 10 deals with reducing the impact of cancer in our lives. A lot of facts have come out in the past 10 years telling us that reduction of sugar and starchy food intake reduces cancer. Curcumin, resveratrol and vitamin D3 supplements also reduce cancer rates as does exercise and stress management. All of this is reviewed here.

Chapter 11 checks out your hormone status. Women need to avoid estrogen dominance; both sexes need to replace the hormones that are missing. By paying attention to your hormonal status and replacing the missing natural hormones with bioidentical ones, most people can add 10 to 15 years of useful, active life!

Chapter 12 is refining some of the thoughts about anti-aging. You will learn about the importance to keep your mitochondrial DNA healthy. Apart from that there are ways how to keep your telomeres longer; certain supplements that are reviewed will help. Also your lifestyle does make a big difference in how old you can turn.

Chapter 13 investigates the limits of supplements. Many supplements are useful, but you do not want to overdo it and get into toxic levels. More is not necessarily better!

Chapter 14 reviews an alternative approach to treating ADHD. Attention deficit and hyperactivity disorder has been over diagnosed, has been neglected and has been over treated with dangerous drugs. An alternative treatment plan is discussed, which includes a combination of therapeutic steps.

Chapter 15 gives you a brief summary of the book.

Kirkus Review

Kirkus Reviews reviewed the book on March 17, 2016: “A retired physician details how various preventative measures can fend off disease and disability in this consumer health guide. Schilling (A Survivor’s Guide to Successful Aging, 2014) had a family medicine practice in Canada for many years before retiring. Although Schilling ventures into some controversial territory in his latest book, it’s generally an engaging, helpful synthesis of ideas that draws on reputable research from the Mayo Clinic and other sources. Overall, it serves as an intensely detailed wake-up call to the importance of preventative health. He largely brings an accessible and even-tempered tone to his narrative, warning readers, for example, that preventative health measures can only aid in “a delay of aging, not ‘eternal living.’ ” A thought-provoking, impassioned plea to be proactive about one’s health.”

Healing Gone Wrong – Healing Done Right

Healing Gone Wrong – Healing Done Right

Conclusion

In this book it becomes evident that it is better to prevent an illness whenever possible rather than to wait for illness to set in and cause disabilities or death. You heard this before: “Prevention is better than a cure” or “an ounce of prevention is better than a pound of cure”. I will give an explanation, based on scientific data that there is indeed evidence to support these notions on a cellular level. The mitochondria, the energy packages within our cells, are the driving force that keep people vibrantly healthy well into their nineties. All this can only happen when the mitochondria function properly. If the mitochondria are poisoned and as a result of toxins malfunction, we are not looking at a person with vibrant health. Instead sixty or seventy year-olds may be confined to a wheelchair. If you want a life without disabilities, a life without major illnesses and enjoy good health to a ripe old age, you are reading the right book.

The book is written in American English.

Available in the US: http://www.amazon.com/gp/product/1523700904

In Canada: https://www.amazon.ca/Healing-Gone-Wrong-Done-Right/dp/1523700904/  

In other countries the book is available through the local Amazon websites.

Incoming search terms:

Feb
12
2016

Our Toxic Environment

Dr. Jill Carnahan gave a talk about environmental toxins at the 23rd Annual World Congress on Anti-Aging Medicine (Dec. 11-13, 2015) in Las Vegas. Her talk was entitled: “Diagnosis and Treatment of Environmental Toxicity”. It was very interesting, but it cannot be summarized here in depth with all of the details. It would take 10 pages or more to do this. Here I am summarizing the key points that she made, as they are not likely general knowledge. Dr. Jill is a functional medicine expert consultant and treats environmental and mold-related illnesses as well.

Toxins around us

The world we live in is full of toxins like industrial toxic chemicals, car exhausts, and housing materials (carpet, drywall, lumber, flooring). The list goes on with clothing bedding and furniture. More chemicals lurk in the bathroom: they can be found in toothpaste, hair shampoo, conditioners, and personal beauty products that we apply to our face and bodies. Cleaning products and laundry chemicals are also on the list.

Why is it important to be aware of that? Because toxic chemicals that enter our bodies through the skin, the gut and the lungs will accumulate over the years in fatty tissue, in breast tissue and breast milk. Over the long term they contribute to the development of cancer, autoimmune disease like Crohn’s disease or thyroiditis and many other chronic diseases, particularly neurodegenerative diseases like Alzheimer’s and Parkinson’s disease.

Environmental history and tests

Dr. Jill (as Dr. Carnahan calls herself) explained in great detail how important it is to take a thorough environmental history, which includes exposure to occupational poisons, home environmental and nutritional exposures, not only for the present time, but also back several decades. One tool Dr. Jill uses consists of several websites that list environmental toxins by zip code. When the physician is informed of of the places where the patient has lived and worked, based on the zip codes a complete exposure picture emerges.

Symptoms are the indicator whether or not toxins may play a role: fatigue, sleep disturbances, memory problems, headaches and the presence of more serious conditions like autoimmune diseases, neurodegenerative diseases and cancer.

In addition refined blood and urine tests are performed that check out toxic levels of common toxins.

There are exotoxins, coming from the outside: phthalates, parabens, heavy metals, solvents, organophosphates and pesticides to just name the more common ones. Toxic molds and heterocyclic amines are also exotoxins. These latter carcinogens (heterocyclic amines) are produced by overheating meat.

Then there are endotoxins, toxins that are produced inside the body: endotoxins in the form of toxic lipopolysaccharides from gram negative bacteria (causing toxic shock syndrome), yeast, chemical additives from food, stress and constant negative emotions leading to an overdose of glucocorticosteroids. All of this leads to the total toxic body burden.

Total toxic body burden

Here what leads to the total toxic body burden: Eating a Standard American Diet is one of the main reasons why people accumulate toxins. Add to that petrochemicals, residues, pesticides, and fertilizers, and exposure to heavy metals, like mercury and lead. Some medications like antifungals can also be toxins. Food allergies, environmental allergies and allergies to molds indicate that the body has accumulated toxins. There are also internal toxins from bacteria, fungi, viruses, and yeast that contribute to the total toxic burden. Hormonal and metabolic toxins that aren’t eliminated properly add to the problem, as do isolation, loneliness, anger, jealousy, and hostility. These negative emotions function like toxins on the immune system. Mental illness can contribute similarly in a negative manner, as the mind and the body work together.

When to expect environmental toxicity

A functional medicine expert like Dr. Jill will suspect environmental toxicity when one or more of the following symptoms are present:

Headaches, joint pain, muscle aches, fatigue, difficulty concentrating, food cravings, gas/bloating, constipation, foul-smelling stools, diarrhea, postnasal drip, sinus congestion, canker sores, heartburn, insomnia, trouble losing weight, water retention, rashes, acne, skin problems, psoriasis, eczema, dark circles under the eyes, bad breath or premenstrual syndrome.

Diseases that are related to environmental toxicity

As already mentioned before Parkinson’s disease and Alzheimer’s disease are among the neurological diseases that have been identified to be linked to environmental toxicity. Some forms of dementia and MS also belong to these. In the very young child autism has been identified as filtering out those who are particularly sensitive to environmental toxicity. Attention deficit disorder also belongs here.

Among adult patients heart disease, chronic fatigue syndrome, fibromyalgia, Crohn’s disease and ulcerative colitis are red flags for possible underlying environmental toxicity. Food allergies, depression, anxiety and insomnia can also be indicators of environmental toxicity. Arthritis, menstrual disorders, autoimmune disease and any form of cancer are also flags for environmental toxicity.

Dr. Jill explained that the doctor who specializes in environmental issues would take a detailed history paying attention to chemicals the patient may have ingested or be in contact with. It also includes a dental history, including whether or not the patient has silver amalgam fillings or had them removed without subsequent chelation therapy.

She even showed several slides of known associations with specific toxins for the diseases just indicated. These are subsequently identified as closely as possible by doing toxicity tests.

Markers of reserves

There are several marker substances that get used up when the body starts detoxifying some of the environmental toxins.

  1. Glutathione levels in the blood can be measured and can serve as an indicator as to whether or not the body has been challenged by toxins. Glutathione is synthesized by the liver and is a powerful antioxidant and toxin remover. A low glutathione levels is associated with many chronic illnesses.
  2. A low total antioxidant capacity is an indicator that toxic metal exposure, infection, inflammation, xenobiotic exposures or environmental toxicity in general may be present. There are two metabolic pathways that are important for detoxification to occur: the methylation pathway and the trans-sulfuration pathway. It would be too technical to go into this further, but treatment concentrates on re-establishing these metabolic pathways.
  1. Co-Q-10 (=ubiquinone) can be measured in the plasma and is also a marker of reserve. It can also be given as a supplement at 400 mg per day, which will strengthen mitochondrial function. The mitochondria are the energy packages of each cell.

Organic acids

There are organic acids that are toxic. One of them is methyl-tert-butyl ether (MTBE), which is an additive used to increase octane ratings in gasoline. It has been found in ground water from leaks of gas from tanks in filling stations. Inhalation at the gas station can cause dizziness, headaches and mental confusion. In animals it has caused gastrointestinal irritation, liver and kidney damage. Another organic acid, styrene, is widely distributed in rubber, insulation, plastic, fiberglass, food containers and carpet backing. The US-EPA has labeled it as “potential human carcinogen”. Special tests, which the environmental doctor can order can measure the levels of these organic acids in the body.

Epigenetics

Autistic children have taught doctors a lot about epigenetics. After initial 2 or 3 years of normal functioning autistic children suddenly have a variety of severe symptoms like balancing problems, lack of social skills, problems concentrating, tiptoeing etc. What happened is that one or more of the enzymes involved in the methylation pathway are no longer working properly because of epigenetic effects, events that cause their DNA to have a different gene expression. However, with detoxification and nutritional rehabilitation it is possible to turn this around, as the underlying cause is not a fixed genetic defect, but rather an epigenetic malfunctioning. You fix the methylation pathway, and full function returns.

Other research has shown that a similar methylation defect occurs in PTSD and in schizophrenia. Orthomolecular physicians have developed treatment programs for schizophrenics that often work (but not in all cases).

Dr. Jill stated that with genetic disease there is a multitude of characteristic symptoms, which is due to abnormal methylation pathways that is often combined with a severe oxidative overload, caused by environmental insults. Most cancer and chronic diseases are epigenetic in nature, not caused by genetic causes. Dr. Jill explained that the molecular switches of the epigenetic switch that turns a gene on or off have been unmasked: Acetyl groups promote gene expression, while methyl groups inhibit gene expression. As long as there is a balance in the methyl/acetyl ratio, the patient is healthy; the moment environmental toxins disturb the balance and an epigenetic switch occurs, the patient is heading towards disease. What genes are switched on or off determines what disease will develop.

More toxins: alkylphenols, organochlorines and volatile solvents

Alkylphenols: Bisphenol (BPA) is contained in food and beverage containers, water bottles and plastic dinnerware. Many countries have outlawed BPA in baby bottles.

Triclosan is contained in deodorants, toothpaste and shaving creams.

Organochlorines: Many of these substances have been banned because they are persistent poisons. Because of this they are still in the environment today, particularly in non-organic produce. DDT was used agriculturally as an insecticide until 1972, but is still found now in meat, poultry, dairy products and fish. Hexachlorobenzene was used as a pesticide until 1965 and as fungicide in cereal grains. Mirex was used as a pesticide for fire ants until 1978.

When you buy non-organic butter, farmed Atlantic salmon, non-organic cheese and non-organic fatty meats (lamb, ground beef) they contain various pesticides.

Dr. Jill’s advice: don’t buy that, but buy organic food!

Sauna therapy and colonic irrigations will remove much of the chlorinated pesticides. Chlorophyll and all chlorophyll containing foods will also help in eliminating persistent organic pollutants. This could be a good reason to consume the occasional homemade green smoothie with leafy organic ingredients like spinach or kale!

Volatile solvents: Benzene (gasoline), styrene, toluene, xylenes are all solvents contained in car exhaust fumes and styrene in Styrofoam. Don’t microwave food contained in Styrofoam, as it releases the toxic styrene into the food. Avoid breathing the fumes of gasoline, glues and solvents; use non-toxic cleaners. Vitamin C, selenium and glycine help to detoxify volatile toxins.

After discussing mold and mold toxicity as well as glyphosate toxicity from GMO crops in detail, which would be too long to discuss here, Dr. Jill presented a quick

Clean diet 101”:

  1. Buy organic food. It should be sugar-free, gluten-free, dairy-free, non-GMO food.
  2. Buy only whole and un-processed foods, a variety of leafy greens and other chlorophyll-rich foods. Add to this a variety of colorful fruits and veggies, but avoid the dirty dozens; buy them organic.
  3. Limit processing of your food.
  4. Get local or homegrown food; avoid refined oils and trans fats.
  5. Limit alcohol and caffeine.
  6. Avoid food allergens; avoid the most toxic foods.
  7. Avoid farmed Atlantic salmon, high mercury fish like tuna, orange roughy, Chilean sea bass, shark and swordfish. Here is a detailed guide to low mercury fish. Stick to “very low” and “low mercury fish”.
  8. Avoid non-organic eggs & dairy. Avoid the dirty dozen fruits/veggies mentioned under point above.
Our Toxic Environment

Our Toxic Environment

Conclusion

Here is a quick whirlwind tour through toxins in our environment. The most important step I suggest you take is to review the toxins in your bathroom and around the house. The next important step is to buy and eat the right foods that are toxin free. If you follow Dr. Jill’s “clean diet 101” as described above, you will avoid exposure to toxic substances. Your healthy food intake becomes your maintenance treatment to detoxify at the same time. Only more seriously affected people need to see an expert like Dr. Jill. People with mercury or other heavy metal poisoning may need a series of intravenous chelation treatments as mentioned in this link. The entire process requires a lot of attention and vigilance. Ask questions about products and read labels. It is worth the effort, as this means preventing health problems in the future.

Incoming search terms:

Jan
31
2016

The Gut and Brain Connection

At the 23rd Annual World Congress on Anti-Aging Medicine (Dec. 11-13, 2015) in Las Vegas there were several lectures pointing out the importance of the gut flora for proper brain function. If you have the wrong gut flora, you can get a number of diseases like diabetes, fibromyalgia, rheumatoid arthritis, multiple sclerosis, muscular dystrophy, some cancers and even obesity. Martin P. Gallagher, MD, DC talked about this in his talk “Gut on Fire, Brain on Fire!”

Function of the microbiome

The microbiome is the sum of all microbial organisms inhabiting the human body, which colonize mainly the colon, but also to a lesser degree the small intestine. Dr. Gallagher stated that the microbiome weighs only 7.1 oz., although in the past have some have estimated its weight to be as high as 3 pounds. The purpose of the microbiome is to help form a gut/blood barrier. It forms a 30-micron thick layer in the GI tract, protects the intestinal lining and metabolizes food remnants, especially from carbohydrates. It also communicates with the immune system. There is a cross talk between the lining of the gut and the and the body’s immune system. The gut bacteria help the body to create stability; they also decrease intestinal permeability.

When inflammation occurs in the gut, the thickness of the biofilm is less than 30 microns. Intestinal permeability increases, which is called “leaky gut syndrome”. This can be the cause of autoimmune diseases and possibly other diseases.

The enteric nervous system

The gut can produce as many neurotransmitters as the brain and spinal cord can synthetize. The enteric nervous system communicates with the brain through the vagal nerve. Serotonin is an important neurotransmitter that has been found to regulate motility of the gut. The control system of the gut can work on its own and override the concerns of the central nervous system.

Parkinson’s disease is a disorder of the enteric nervous system as well as the brain. With Alzheimer’s disease the characteristic lesions found in the brain are also found in the enteric nervous system!

In a mouse experiment a Lactobacillus strain known to be part of the microbiome was shown to heal anxiety and depression related changes in certain parts of the brains of these experimental animals. But when the vagal nerve of these animals was severed, none of these healing changes occurred. This suggests that the gut bacteria are able to communicate to the brain via the vagal nerve. Researchers have coined this connection the “gut-brain axis”. These protective gut bacteria have the ability to protect humans from gastric acidity, from bile acid toxicity, they adhere to the lining of the gut and they persist to reside within the gastrointestinal tract. Probiotics help the immune system to maintain the immunologic memory and to secrete antibodies, called immunoglobulins.

Two strains with benefit to humans are Lactobacillus rhamnosus GG and Saccharomyces boulardii. Probiotics often help against diarrhea. The natural food for gut bacteria in the colon comes from starches of chicory, asparagus, inulin and onions that are indigestible in the stomach and small intestine, but are fermented in the colon to provide food for the bacteria residing there.

Small Intestinal Bacterial Overgrowth (SIBO)

Overgrowth of the small intestine with bacteria that produce endotoxins appears to have significance in both animal models and human disease. Chlamydia species as well as Borrelia burgdorferi (Lyme) can produce toxins that cause hypersensitive of pain in soft tissues in fibromyalgia and animal models of fibromyalgia. SIBO-small intestinal bacterial overgrowth- in experimental animals caused the same hypersensitivity of the soft tissues and also leaky gut syndrome.

Risk factors for SIBO

What causes SIBO is too little stomach acid production, treatment with proton pump inhibitors (powerful anti acid medications) and antibiotics. According to Dr.Gallagher SIBO also occurs in postsurgical patients, in patients with diabetes, and is brought on by alcohol, nicotine, drugs and GMO foods.

Neurogenic inflammation

Normally the blood brain barrier keeps immune cells from the body out of the brain. Only glucose, proteins and lipids are allowed into the brain, but not lipophilic neurotoxins. Neurogenic triggers, when admitted to the brain, will compromise the function of the immune cells of the CNS, called microglia. This can result in memory loss, Alzheimer’s, dementia, seizures, migraines, Parkinson’s Disease, multiple sclerosis, cancer, weakness, numbness, etc.

What triggers inflammation?

Here is a long list of different items that cause inflammation: aging, hormone deficiencies, obesity, diabetes mellitus, cardiovascular disease, fungal infection, the Standard American diet (SAD), pain, trauma and mechanical stress, heavy metals, food allergies, toxins, gut dysbiosis, small intestinal bacterial overgrowth, mal-digestion/absorption, prescription drugs, over-the-counter drugs, recreational drugs and alcohol, lack of exercise and lack of sleep.

Neurotoxic insults start the chain of reactions (heavy metals, nutritional deficiencies, viruses/fungus/bacteria, inflammatory diet, MSG, solvents, pesticides, herbicides, etc.): one or more of these factors destabilize the tight junctions of the blood brain barrier, which leads to neurogenic inflammation. The result is Parkinson’s disease, MS, dementia, chronic pain, behavioral and personality changes, Alzheimer’s disease, ALS and Lyme disease.

What seems to be happening a lot is that there is overgrowth of abnormal bacteria in the small bowel, which produce toxins. These in turn lead to leaky gut syndrome, which allows neurogenic triggers to attack the blood brain barrier. From here it is a short step to neurotoxic insults of the brain overstimulating the microglia, which will produce the diseases listed above.

Healing of brain inflammation

Treatment starts with the Mediterranean diet, which has been shown to have anti-inflammatory properties. People who are gluten sensitive need to eliminate gluten entirely from their food; casein sensitive people need to eliminate dairy products. A triple strength, molecularly distilled fish oil product is taken as a supplement every day with 4 grams or more of DHA/EPA.

Glutathione: One of the most powerful antioxidants and anti-inflammatories is intravenous glutathione. This is given as intravenous chelation therapy, which removes heavy metals. Other chelation agents such as EDTA intravenously may be given alternatively. Dr.Gallagher said that glutathione serves as primary cellular defense against free radicals, is a powerful antioxidant and serves as detoxifying agent against xenobiotics. Xenobiotics are remnants of artificial fertilizers, pesticides and pollutants that are contained in crops we eat.

Dr. Gallagher gives 600mg of glutathione twice per day intravenously for 30 days. In Parkinson’s disease patients whose mid brain is often poisoned by mercury this leads to 42% decline of disabilities and the effect last for 2 to 4 months after this treatment has been stopped. This treatment also protects telomeres, the caps on the ends of cellular DNA as well as mitochondrial DNA. Glutathione is protective of neurons and nerves.

Curcumin: this common Indian spice, found in turmeric is a potent anti-inflammatory. It is a safe natural agent and has also anti-viral and anti-tumor activities. It binds to the vitamin D receptor and works synergistically together with vitamin D3. Solid lipid curcumin particle technology makes curcumin 65-fold more bioavailable; free curcumin is allowed to pass the blood brain barrier. Lower doses achieve the same effect than regular curcumin.

According to a publication using lipidated curcumin the following observations were made: improved vascular function, inflammatory markers reduced by 14%, triglycerides lowered by 14%, oxidative stress reduced, catalase increased and total antioxidant status improved.

Omega-3 fatty acids: omega-3 fatty acids are anti-inflammatory by countering the arachidonic acid pathway that leads to inflammation. It is best administered as triple strength, molecularly distilled fish oil. DHA/EPA are the active ingredients. Chronic inflammation requires 2 to 12 grams daily; irritable bowel syndrome 6 to 12 grams daily; depression, anxiety and insomnia require 2 to 4 grams per day; autoimmune disease, back pain and degenerative joint disease 4 to 12 grams per day.

Gut/brain dysbiosis: For gut/brain dysbiosis Dr. Gallagher recommended to start with a 10-day fruit/vegetable detox program. Milk thistle, glutathione and pancreatic enzymes are used in combination. Lipidated curcumin. Glutamine, prebiotics and probiotics are given for gut support. Molecularly distilled fish oil (DHA/EPA) and vitamin D3 are given as anti-inflammatories. Oral and intravenous glutathione is given to detoxify. Antifungals are given as a combination of glutathione, oregano, olive leaf and silver salts.

The Gut and Brain Connection

The Gut and Brain Connection

Conclusion

Inflammation can start in the gut, lead to leaky gut syndrome and break down the blood/brain barrier. The end result is that the brain also gets inflamed and Alzheimer’s disease and dementia can occur. The sooner treatment is begun, the faster the recovery will be. When the end stage is reached, it is difficult to turn the inflammatory process around. Fortunately there are effective ways to get the inflammation under control with intravenous glutathione in the beginning and subsequent treatment with lipidated curcumin, omega-3 fatty acid and vitamin D3. A permanent switch to a Mediterranean diet is important as well to keep inflammation under control.

A few years back this type of approach would have been considered as “quackery”; now it is the latest information from research into the brain/gut connection. A lot can be done on a preventative basis with lifestyle and nutrition choices. Treatment is possible, but once full-fledged disease is established, a full cure may not be possible.

Incoming search terms: