May
20
2017

Prevention Of Telomere Shortening

Dr. Mark Rosenberg gave a talk on prevention of telomere shortening. This was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The detailed title was: “The Clinical Value of Telomere Testing”.

What are telomeres?

Telomeres are the caps at the end of chromosomes. They are very important in the aging process. Prematurely shortened telomeres are linked closely to all major diseases like cardiovascular disease, cancer, diabetes and more. Telomeres are also a measure of the aging process. Aging occurs due to a decrease of the number of cells in organs and/or because of a lack of functioning of these organs. Telomeres get shortened every time a cell divides. But when the telomeres are used up, there comes a time when cells can no longer divide. These cells become senescent cells or they enter apoptosis (programmed cell death).

The senescent cells can become a problem when they get transformed into cancer cells and their telomeres lengthen again. These cancer cells divide rapidly and this can become the reason why cancer patients to die.

What is the significance of telomeres?

Telomere dysfunction is the first sign that the telomeres are getting shorter in a person compared to the average telomere length in a comparable age group. This is not only important for aging, but also has clinical implications. The shorter telomeres are, the higher the risk for cardiovascular disease. Telomere length also provides prognostic information about the mortality risk (risk of dying) with type 2 diabetes and for many cancers. Many physicians incorporate a telomere blood test into periodic health checks, if the patient can afford it.

Interventions that help telomere length

Here are a number of things we can do to lengthen our telomeres.

  1. Rosenberg mentioned that the strongest effect on telomere lengthening comes from caloric restriction and weight loss. 80 years ago they showed at the Cornell University that rats put on calorie restriction had a 30% increase in their mean and maximum lifespan. Many research papers have confirmed that the same is true in man and that the common denominator is telomere lengthening.
  2. Next are regular physical activity, meditation, reduction of alcohol consumption and stopping to smoke.
  3. Taking antioxidants and omega-3 fatty acids regularly will also lengthen telomeres.
  4. Improving one’s dietary pattern by adopting a Mediterranean type diet that contains cold-pressed, virgin olive oil.
  5. Telomerase activators. Here is some background on the TA-65 telomerase activator, which is based on Chinese medicine. A one year trial was completed with 250 units and 1000 units of TA-65 per day. The lower dose (250 units) showed effective telomere lengthening, while the placebo dose did not. The 1000 unit dose did not show statistical significance.

Should you wish to take TA-65, only take 250 units per day, not more.

Cancer and telomeres

There is a strong correlation between cancer and telomere shortening. When cells are at the brink of dying toward the end of their life cycle the telomeres get shorter and shorter. This is the point where the cells can turn malignant. Certain genetic abnormalities help the malignant transformation, like 11q or 17q deletions or a p53-dependent apoptosis response. Once cancer cells have established themselves they activate telomerase in 85% of cases. In the remaining 15% of cancer cases telomeres are activated through telomerase-independent mechanisms. Here are a few examples.

CLL

CLL stands for chronic lymphocytic leukemia. It is a disease of the aging population. At age 90 people’s bone marrow cells have a telomere length of only 50% of the length at birth. This is the reason that in older age CLL is more common. Researchers observed a population segment and found that the shorter telomeres were, the poorer the overall prognosis and overall survival for CLL was.

Lung cancer

In patients with non-small cell lung cancer the telomerase activity was examined. When telomerase activity was present, the 5-year survival was only 55%. When telomerase activity was absent, the prognosis was 90% survival after 5 years.

Prostate cancer

  1. Telomere shortening in stromal cells was found to be associated with prostate cancer risk. Men with shorter telomere length in stromal cells had a 266% higher risk of death compared to men with normal telomere length.
  2. Another study took blood samples and determined the telomere length in lymphocytes (the immune cells). Those men who came down with prostate cancer within a year after the blood sample was taken had short telomeres. The risk for prostate cancer in these patients was 355% higher than in the prostate cancer negative controls.

Yet another study looked at surgical tissue samples from 596 men that

Underwent surgery for clinically localized prostate cancer. Patients whose samples showed variable telomere lengths in prostate cancer cells and shorter telomeres compared to prostate samples with less variable telomere length and longer telomeres had a much poorer prognosis. They had 8-times the risk to progress to lethal prostate cancer. And they had 14-times the risk of dying from their prostate cancer.

Breast cancer

Breast cancer is diverse and consists of cases that are genetically inherited (BRCA1 and BRCA2), but there are also cases where the cancer is local or more advanced (staging). In families with mutated BRCA1 and BRCA2 telomeres are significantly shorter than in spontaneous breast cancer. Increased telomerase activity in breast cancer cases is directly related to how invasive and aggressive the breast cancer is.

  1. One study was shown where blood leukocytes were analyzed for telomere length in 52 patients with breast cancer versus 47 control patients. Average telomere length was significantly shorter in patients with a more advanced stage of breast cancer than in early breast cancer. Mutated HER patients had the shortest telomeres. It follows from this that checking for the HER status and blood telomere testing adds to the knowledge of potential cancer development and prognosis.
  2. Short telomere length was associated with larger breast tumors, more lymph node metastases and more vascular invasion. More aggressive breast cancer cells have higher telomerase activity. More than 90% of triple negative breast cancers have short telomeres.

CNS disorders and telomeres

Dr. Rosenberg presented evidence that shorter telomeres are associated with dementia. But dementias with Lewy bodies and Alzheimer’s disease are also linked to short leukocyte telomeres. The length of blood telomeres predicts how well stroke patients will do and how people with depression will respond to antidepressants.

Cardiovascular disease and telomeres

Our blood pressure is kept constant through the renin-angiotensin-aldosterone system. When this system is not stable, our blood pressure shoots up and causes cardiovascular disease. This is tough for the heart, as it has to pump harder against a higher-pressure gradient. A study of 1203 individuals was examining the connection between leukocyte telomere length and renin, aldosterone and angiotensin II activity. It concluded that oxidative stress and inflammatory responses affect the telomere length of leukocytes and that the more stress there is in the renin-angiotensin-aldosterone system, the more cardiovascular disease develops. The conclusion of the study was that the overall cardiovascular stress leads to shortening of leukocyte telomeres.

Prevention Of Telomere Shortening

Prevention Of Telomere Shortening

Conclusion

Telomere length testing from a simple blood test will become a more important test in the future as hopefully the cost comes down (currently about 300$). It can predict the general aging status by comparing a single case to the general telomere length of the public. But it can also predict the cancer risk, risk for mental disease and cognitive deficits (Alzheimer’s disease). In addition your cardiovascular status is also globally assessed with this test. What can be done, if the test comes back with short telomeres?

It allows you to change your lifestyle and adopt a healthy diet. You can exercise regularly, take antioxidants and meditate. There are even telomerase activators that are gradually becoming more known. They lengthen the telomeres. The cost of telomerase activators will likely still be a problem for some time. All in all telomere length tests are here to stay, but effective intervention at this point is largely limited to healthy lifestyle choices. This is good news: healthy lifestyle choices like non-smoking, exercise and avoiding non-processed foods are either free or have a reasonable price tag. Telomerase activators are big business and at this point not really affordable!

Apr
29
2017

Cancer By Chance

A new theory talks about cancer by chance. In other words, it likely is mostly bad luck when cancer develops. Mathematician Cristian Tomasetti and cancer geneticist Bert Vogelstein of Johns Hopkins University in Baltimore, Maryland developed a new model of cancer development. They found that stem cells in different organ systems divide at different rates. The faster they go through cycles of cell divisions, the higher the chances of a mutation. The mutations happen in the genetic material and can lead to cancer. Dr. Vogelstein applied this model to 32 different cancer types and found the following.

  • 66% of cancers: cancer-promoting mutations develop by chance during cell division in various organs
  • 29% of cancers are due to environmental causes
  • 5% of cancers are inherited

Stem cells in organs can turn into cancer by chance

Key to the new theory of “cancer by chance” is that cancer likely is developing from stem cells in different organs. Different stem cells have different rates of stem cell divisions.

In pancreatic cancer they found that 5% were inherited, 18% were from environmental factors (smoking) and 77% came from chance mutations. This data was derived from the Cancer Research UK database.

For prostate cancer the rate of spontaneous mutations is 95%. When all of the cancers are looked at about 1/3 of cancers are due to either environmental or inherited factors, but 2/3 of all cancers are due to random mutations (“bad luck mutations”). They pointed out this fact in their first publication.

With the second publication, as mentioned in the beginning, Vogelstein and Tomasetti concentrated on 17 common cancers in 69 countries. They searched 423 international cancer databases. Again they found that the more stem cells divided in an organ, the more random mutations occurred. This caused cancers in that organ.

Here are a few examples for lifetime stem cell divisions:

  • Colon: 6,000 cell divisions in stem cells of the colon
  • Breast: 300 cell divisions in breast stem cells
  • Lung: only 6 cell divisions in lung stem cells

Colon cancer is very common because of the high stem cell division rate. But they also looked at environmental factors. For instance, lung cancer is rare in non-smokers because stem cells in lungs divide slowly. However, the carcinogens from cigarette smoke add a huge environmental risk. The end result: there is more lung cancer in smokers. Vogelstein said that with every stem cell division there is the creation of three new cell mutations because the body has a “poor copying machine”. During meiosis DNA breaks can occur that lead to mutations. Once they occurred, they continue to get copied.

Environmental factors versus cancer by chance

In the first paper the medical community was critical about how the authors had overemphasized that two third of cancer is caused randomly. So in the second paper Vogelstein and Tomasetti mentioned quite a bit how a change of the environment can change the final outcome of developing cancer.

This is also reflected in this summary from the CNN.

They mentioned that one mutation is not enough to cause cancer. You need three or four such mutations. As we get older there is a higher likelihood that we accumulate this number of mutations, and cancer can develop. But if we exercise, stop smoking and avoid red meat, this can contribute to a much healthier environment in the dividing stem cells. In this case we may not accumulate enough stem cell mutations in our lifetime to come down with cancer.

There is a problem with prostate cancer as indicated in this German summary of Vogelstein and Tomasetti’s work.

Japanese men have an extremely low rate of prostate cancer, namely 1/25th of the rate in the US. When Japanese men immigrate to the US, it does not take long before their risk is the same as that of US men. This is a classical case of the importance of environmental factors in cancer causation. Song Wu has pointed out in a publication in Nature that in his opinion Vogelstein and Tomasetti did not pay enough attention to extrinsic (environmental) factors in the causation of cancers.

This could explain the prostate cancer conundrum just mentioned. There may be more xenoestrogens in the environment in the US when compared to Japan, and this may have caused the additional prostate cancers when Japanese men moved to the US. Xenoestrogens are estrogen-like hormones in the environment, which can cause prostate cancer.

Prevention undermines “cancer by chance”

The role of prevention is likely larger than previously estimated. Now that we know that on average 2/3 of all cancers are due to chance mutations, it is important to realize that prevention and early detection play an enormous role.

  1. Most cancers can only be cured in stage 1 and stage 2 out of 4 stages. And this is only the case when the mutated stem cells are removed along with the clone of cancer cells.
  2. In terms of reducing the risk for lung cancer this means to stop smoking.
  3. With colon cancer it means having regular colonoscopies where the suspicious polyps are removed.
  4. For prostate cancer it means to do a mapping biopsy and to do cryoablation therapy, which has a prostate cancer vaccination effect as well.
  5. Not all cancers can be diagnosed early. Pancreatic cancer is such a difficult to diagnose cancer. But screening methods have been developed that are more sensitive and very specific such as the Oncoblot test.  With this test even cancer of the pancreas can be diagnosed years before it would be clinically detectable.
  1. We do know that chronic inflammation can lead to cancer. It makes sense therefore to start with an anti-inflammatory diet like the Mediterranean diet. Fish oil is also anti-inflammatory.
  2. Add to this regular exercise, as we know it reduces the risk for cancer development and strengthens your heart and lungs.
  3. Vitamin D3 can reduce cancer risks in both males and females. When vitamin D3 was given and blood 25-hydroxyvitamin D levels were above 40 ng/ml, the breast cancer rate was reduced by 71% compared to a low vitamin D3 group. Similarly in men the prostate cancer rate dropped by 71% with vitamin D3 supplementation.  There is more good news with vitamin D3. You can read about it in the link.
Cancer By Chance

Cancer By Chance

Conclusion

The causes of cancer have always been by chance, by environmental exposure and by inheritance. In recent years more detail about this has come to the forefront. Now we know that the majority of cancers develop by chance, but this does not mean we should sit back and do nothing. The PAP test with early diagnosis of cancer of the cervix and early treatment has almost eradicated this cancer. HPV vaccinations have added to the armamentarium. Colonoscopies have reduced the incidence of colon cancer, but only through screening at regular intervals. The PSA test has enabled men to check for prostate cancer, and early treatment for this is quite successful. More is known about cancer prevention through supplements and lifestyle.

Nature is cruel and wants to knock us off, as we get older. The only alternative we have is to fight back as follows: reducing environmental causes, increasing preventative steps and going for early treatment, when cancer is diagnosed.

Incoming search terms:

Apr
22
2017

Only Moderate Alcohol Consumption Benefits Your Heart

A new study from England finds that only moderate alcohol consumption benefits your heart. The study was released on March 22, 2017 in Great Britain. 1.937 million people (51% women, 49% men) had participated in this investigation over 6 years. The lead author, Dr. Steven Bell is a genetic epidemiologist. He said that this study was done to clear up some of the confusion from previous studies. He wondered why the control group without alcohol exposure had more cardiac problems than the moderate group. It did make sense though, that the high alcohol group had worse cardiac problems.

But he and researchers from Cambridge University and University College London did this study to get more detail. They wanted to know why the current non-drinking group used as a control was not looked at more carefully. It consisted of a mix of lifelong abstainers; people who drank formerly, but then gave it up. And the other group was those who drink on an occasional basis.

With this in mind the researchers designed their study. They also used also larger numbers to increase the reliability of the study.

Details of English study

The data comes from the Clinical Practice Research Datalink providing anonymous patient records from general practices in England. The patients upon entry into the study had to be older than 30 years, but have no evidence of cardiovascular disease. A total of 1,937,360 patients qualified to be part of the study.

Based on patients’ records and patients recollections people, researchers looked at 5 classes of drinkers:

  • Non-drinkers (14.3%)
  • Former or ex-drinkers (stopped drinking at one point, 3.7%)
  • Occasional drinkers (drinking rarely, 11.9%)
  • Moderate drinkers (drinking within sensible limits, 61.7%)
  • Heavy drinkers (hazardous alcohol use, 8.4%)

The end point of the study researchers concentrated on the frequency of cardiovascular diseases like angina, heart attack, sudden cardiac death, stroke, peripheral arterial disease, abdominal aortic aneurysm and others. I only listed 6 of the 12 cardiovascular diagnoses as otherwise it would get too technical.

More information: Most study participants were non-smokers, their BMI was within normal limits, and they also did not have diabetes.

Findings of the study

There were significant differences among subclasses of alcohol consumption and the development of cardiovascular diseases over 6 years.

  1. The findings were in line with a number of previous similar studies that showed a U-type dose response curve between developing cardiovascular diseases and alcohol consumption. The group of non-drinkers (where former and occasional drinkers were removed) often had a 20% to 56% increased risk of developing cardiovascular disease, while moderate drinkers had no added risk.
  2. On the other hand the heavy drinkers were at risk of developing cardiac arrest (50% increased risk) or heart failure (22% increased risk). A death from a sudden heart attack occurred in heavy drinkers with a risk of 21% increased risk. A former drinker had a 40% increased risk for this, but a non-drinker a risk of 56% increased risk!
  3. A non-drinker had a 32% increased risk of getting a regular heart attack, a former drinker had a 31% increased risk, an occasional drinker 14%, a moderate drinker no added risk, and a heavy drinker had a 12% reduced risk! This seemed to show that drinking alcohol keeps the coronary arteries open and clean. I have had pathology demonstrations with Professor Dr. Adalbert Bohle at Tübingen University during my medical training in 1969. At that time he pointed out how clear and wide open the coronary arteries were in chronic alcoholics. It was not heart disease that killed those patients; they had died from end stage liver cirrhosis, and we saw pathological slides of that.
  4. Heavy drinkers get more ischemic strokes (33% increased risk) and more intracerebral hemorrhages (37% increased risk).
  5. Obstruction of blood vessels in the lower legs (peripheral arterial disease) is common with heavy drinkers (35% increased risk) and even former drinkers (32% increased risk). Non-drinkers have a 22% increased risk while moderate drinkers have a 0% risk (no increased risk).
  6. There was no association between heavy drinking and aortic aneurysm. On the other hand, non-drinkers (32% increased risk) and former drinkers (23% increased risk) showed an increased risk of aortic aneurysm formation.

Other effects of alcohol consumption

The study above did not take into consideration that alcohol consumption has many other consequences beside cardiovascular effects. One for instance is the effect on the brain and the increase of serious car accidents. Another effect is the causation of cancer.

The American Cancer Society clearly states that alcohol consumption has been causatively associated with the following cancers.

  • Cancer of the mouth
  • Cancer of the pharynx (throat)
  • Cancer of the larynx (voice box)
  • Cancer of the esophagus
  • Cancer of the liver
  • Cancer of the breast
  • Cancer of the colon
  • Alcohol also plays a role with cancer of the pancreas

Many studies have shown a dose-response curve between alcohol consumed and the development of these cancers. In other words there is never a safe low dose, below which no cancer would be caused over time.

These authors conducted a metaanalysis of 16 prospective cohort studies including 6,300 patients. It showed that alcohol caused cancer of the colon and rectum. High intake of alcohol showed a 50% increased risk of causing colon cancer. With regard to rectal cancer the risk was 63% higher. In both cases the highest alcohol intake was compared to the lowest category of alcohol intake.

These authors concluded their discussion by pointing out that 6% of the worldwide cancer deaths are attributed to alcohol intake. They also stated that colorectal cancer risk increased by 50% in the heaviest alcohol users. Among the group of heavy drinkers the cancer death rate would likely be 9%. There would a reduction of mortality from cardiovascular disease by one third in middle and old age. The end result would be 6% mortality again; essentially there is no change.

No matter how you try to solve this equation, there is a risk of cancer deaths from exposure to alcohol. There is also a risk that heavy drinking can cause significant cardiovascular diseases mentioned.

Only moderate alcohol consumption benefits your heart

Only moderate alcohol consumption benefits your heart

Conclusion

Everything we do in life has consequences. With regard to drinking you know that accidents are more common in drinkers; with prolonged exposure to higher alcohol consumption you can get dementia. Moderate amounts appear to have significant protection from heart disease, but the risk for several cancers is not negligible. This point was not mentioned in the study I discussed in the beginning of my blog. In the latter part I included some data about cancer risks from alcohol consumption.

The paradox remains that non-consumption of alcohol is associated with a significant cardiovascular risk because of a U-shape dose response curve. Moderate alcohol use is associated with the lowest cardiovascular risk. The question is whether we can balance moderate drinking with staying in the low cancer risk area. The recommendation of 1 glass of wine for women and 2 glasses of wine for men has been confirmed by the above study. This is considered a healthy preventative dose with respect to cardiovascular risk. It is the official recommendation for cardiovascular disease prevention. The cancer literature clearly states that there is a small cancer risk from moderate alcohol intake. This is particularly true for the 8 cancers discussed.

Dr James Nicholls, the director of research and policy development at Alcohol Research UK had this to say. He pointed to the fact that there are other ways to prevent cardiovascular disease. For those who do not drink at present it would not make sense to take up drinking. You can strengthen your heart by starting a Mediterranean diet and starting to exercise regularly. The beneficial substance for your heart in red wine is known as resveratrol that can be taken as a supplement. Resveratrol has no side effects and does not have the cancer risk of an alcoholic drink. Dr. Nicholls added, “If you drink within the existing guidelines it is unlikely that alcohol will either lengthen or shorten your life.” It is really up to every individual to balance the wine glass with personal health!

Incoming search terms:

Apr
01
2017

When Food Causes Inflammation

Dr. Hal Blatman gave a talk about when food causes inflammation. His talk was presented on Dec. 9 at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The original title was “Food, Pain and Dietary Effects of Inflammation”.

Dr. Blatman is the medical director of Blatman Health and Wellness Center, Cincinnati and Batman Medical Services, Manhattan.

General remarks about nutrition

Dr. Blatman pointed out that mistakes of nutrition are often behind chronic diseases and illnesses. The physician’s task is to explain to patients how their food intake can be changed to improve inflammation in the body and how the body can heal itself.

Hippocrates said 400 BC “Let food be thy medicine and medicine be thy food”.

In this context Dr. Blatman stated that nutrition could exacerbate symptoms or relieve symptoms and there must be rules for good nutrition. If we do not take care of our nutrition, the gut flora composition changes and causes leaky gut syndrome. But if we consume healthy foods all of this improves.

Mathematical formula for when food causes inflammation

To make it easier to understand the impact of food on our health the speaker offered this formula: G-B+R=P

G stands for good, beneficial things you can put into your body.

B = bad, toxic things that affect your body negatively.

R = reserves that your body has since birth (minus the amounts you have used up)

P = pain and problems you are going to experience

It is P (pain and other medical problems) what brings the patient to see the doctor. G and B is what the patient can change. When done right, the P value in the formula reduces and the pain or medical problems go away.

Nutritional rules

Dr. Blatman said there are three rules about nutrition.

Rule #1 is to not eat fake or toxic foods

He listed NutraSweet, Splenda, Saccharin, margarine and olestra.

  1. Aspartame experiments on rats showed that it can cause cancer: Dr. Blatman said that in man it has been shown to cause multiple myeloma and Hodgkin’s lymphoma. Aspartame worsens depression, 10% is metabolized in the liver into methanol, a nerve poison.
  2. Splenda (sucralose) is made from chlorinated sugar. It reduces beneficial microflora in the gut. It also interacts with liver enzymes that are known to interfere with the bioavailability of oral drugs.
  1. Saccharin alters gut bacteria and increases glucose tolerance.
  2. Hydrogenated fat and margarine. Insects don’t eat margarine, mold will not grow on it, and it will not support life. Merchants like it because food does not turn stale on shelves. Hydrogenated fats like margarine are considered to be poisons. They raise the bad LDL cholesterol levels and reduce beneficial HDL cholesterol levels. The prostaglandin balance changes so that inflammation occurs. There is increased evidence of diabetes and the cell membrane composition changes. Proinflammatory cytokines can cause pain in the dorsal root ganglions. It follows from all of this that it is best to cut out all hydrogenated fat and margarines.
  1. Partially hydrogenated vegetable oil. The cell membrane consists of two lipid layers at a specific ratio of omega-6 essential fatty acids and omega-3 essential fatty acids. It also contains triglycerides, phospholipids and protein. It is expected that the cell membrane absorb nutrients to move into the cell and eliminate waste out of it. The cell membrane needs to remain flexible and within neurons needs to transmit electrical information. The membrane composition is critical for the cell membranes to perform optimally. It is here that the physician has to explain this to the patient. All the fats we eat are the raw material, which will make up our cell membranes. So what fat we eat that day is built into the cell wall that is made that day or is repaired. If we eat hydrogenated fat that day, this is built into the cell wall.  A membrane with hydrogenated fat will:
  • Not transmit nutrients inside the cell
  • Will not transmit waste out
  • Causes the membrane to lose flexibility
  • In a nerve cell there will be abnormal neuron transmission

If we eat hydrogenated fat, we become like a “genuine GM truck fixed with inferior parts”, so Dr. Blatman. The interesting observation is that it takes 4 months after eliminating hydrogenated oil from the diet to get it out from red blood cells. Be aware that French fries increase pain for 4 months, so why eat them?

  1. Olestra, an artificial fat: Olestra has been developed as an artificial fat and is used in chips. It can cause diarrhea, abdominal cramps and weight gain with long-term use. Olestra belongs into the group of fake/toxic foods. Don’t eat Pringles or chips that are made with this.
  1. Healthy oils

There are two types of essential fatty acids, omega-6 fatty acids and omega-3 fatty acids. Many processed foods contain only omega-6 fatty acids, because this is the cheapest way to produce them (they are based on vegetable oils). Instead you want to eat healthy fats like omega-3 fatty acids contained in nuts and fish. You can also add molecularly distilled, high potency omega-3 fatty acids (purified fish oil) as a supplement to help restore the balance between omega-6 and omega-3 in your food intake. Avoid omega-6 fatty acids from corn oil, safflower oil, grape seed oil, soybean oil, cottonseed oil, canola oil and peanut oil.

Compare the metabolism of omega-6 fatty acids with that of omega-3 fatty acids.

The linoleic acid of omega-6 fatty acids gets metabolized into arachidonic acid, which causes pro-inflammatory mediators, PGE2 and LTB4. On the other hand with omega-3 fatty acids alpha-linolenic acid (ALA) is metabolized into EPA, DHA and the anti-inflammatory mediators PGE3 and LTB5.

It is easily understandable why a surplus of omega-6 fatty acids from processed foods will disbalance the omega-6 to omega-3 ratio. This ratio should be 1:1 to 3:1, but many Americans’ omega-6 to omega-3 ratio is 6:1 to 18:1. Omega-6-fatty acids cause arthritis, heart disease and strokes. Be particularly careful in avoiding soybean oil, which is the most popular oil in the last few decades to foul up the omega-6 to omega-3 ratio through processed foods.

When it comes to balancing omega-3 and omega-6 fatty acids in your diet, be aware that nutritional balancing can help you restore the ideal omega-6 to omega-3 ratio of 1:1 to 3:1. An easy way is to cut out processed foods as much as possible. Supplement with molecularly distilled fish oil capsules to add more omega-3 fatty acids into your food intake. Dr. Blatman gave the example of rheumatoid arthritis patients that were put on omega-3 supplements. After 24 weeks their joint swelling and tenderness went down.

Rebalancing the omega-6 to omega-3 ratio was able to treat depression as this research showed. This makes you wonder how much depression may be caused by overconsumption of processed food.

Dr. Blatman suggested the following doses of omega-3 supplementation for various purposes:

  • 1 gram/day as supplementation for healthy adults with a good diet
  • 1-3 grams/day for people with cardiovascular disease
  • 5-10 grams/day for patients with an autoimmune disease, with chronic pain or with neuropsychiatric conditions

He mentioned that these doses are empirical, but in his opinion definitely help. Due to quality differences he suggested that you buy fish oil capsules in a health food store where the quality is best. Stay away from discount stores (the quality is the worst) and drug stores.

Other healthy oils are olive oil and coconut oil. They are also useful for cooking.

Rule #2 is not to eat inflammatory foods

Our body functions like a luxury car; it needs pure food to function. Anything less leads to inflammation, particularly when you eat sugar and processed foods.

Inflammatory foods are sugar, white flour, fruit juice and white/red potatoes. A medium potato=1/2 cup of sugar! Other problematic foods are wheat grain contained in breads, pasta, cereal and thickeners in soups and sauces.

What is the problem with these foods? They break down the zonulin proteins that are a bridge between the lining cells of the gut.

This leads to an increase of intestinal permeability, and leaky gut syndrome can develop. Inflammatory cytokines from visceral fat add to the gut inflammation, and cardiovascular disease and high blood pressure can develop.

Fried potatoes, in particular the consumption of French fries, have been identified as the cause of inflammatory bowel disorder (IBD). Countries with the highest consumption of French fries have the highest incidence of IBD.

A Mediterranean diet and the DASH diet are anti-inflammatory diets.

Rule #3 is to not disturb the bowel flora

A healthy bowel flora is symbiotic with the body. You achieve this by eating green leafy vegetables. A toxic flora from dysbiotic microbes comes from eating white flour, white sugar and red meat. Red meat leaves residues on which dysbiotic bacteria thrive.

Symbiotic gut bacteria produce vitamin K, cobalamin, pyridoxine, biotin, riboflavin, pantothenic acid and short fatty acids. They also degrade metabolic toxins, prevent pathogens from colonization and they stimulate the immune system to mature.

Dysbiosis occurs when the wrong diet consisting of sodas, white flour, sugar and red meat is over consumed. There are toxins that are produced by the dysbiotic microbes. These injure the bowel wall and make the immune system work harder. Immune system dysfunction, fatigue and fibromyalgia can follow.

Dr. Blatman stated that gut dysbiosis that causes leaky gut syndrome could also cause ulcer disease, diabetes, heart disease, fibromyalgia, chronic fatigue syndrome, chronic pain and even cancer.

When Food Causes Inflammation

When Food Causes Inflammation

Conclusion

This was a whirlwind tour through a talk given by Dr. Blatman during the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. What food we eat determines what gut bacteria we harbor, symbiotic ones or toxic ones. This in turn determines which way our health develops. But the content of what we eat is also important. If we consume processed foods we end up consuming way too many omega-6 fatty acids, which cause inflammation, arthritis and heart disease. This is happening in front of our eyes, if we start seeing things the way they are. I was aware of this since the mid 1990’s. In a lecture I attended at a continuing education conference a cardiologist pointed out that inflammation was the determining factor of whether or not our patients would get a heart attack. The lecturer mentioned then that the older cholesterol concept would be replaced by the newer inflammation concept. He was right, but it goes even further! There is the important omega-6 to omega-3 ratio, and fish oil supplementation helps. At the same time it is necessary cutting out processed foods. But there is the newer insight that our bowel flora and red meat consumption can culture toxic bacteria in our own gut. It is in our power to start eating more vegetables and cut out sugar and starchy food. It is time to see chips and French fries not as a “convenience” but a hazard to your health. Food does not have to cause inflammation; right food choices will help us to stay well and live longer.

Incoming search terms:

Mar
25
2017

How Stress Affects Our Hormone System

Dr. Andrew Heyman gave a talk recently about how stress affects our hormone system. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Understanding the Stress, Thyroid, Hormone Connections & Prioritizing Systems”.

Dr. Heyman stressed that there is a triad of hormonal connections that is important to remember: the thyroid hormones, the stress hormones (adrenal glands) and the pancreas (insulin production). We need a balance of these hormones for optimal energy production and circulation. Under stress our sugar metabolism can derail, we develop obesity and fatigue. When balanced we experience vitality and wellbeing.

Metabolic activation pathways

Dr. Heyman projected a slide that showed the metabolic activation pathways. He stated that a number of different factors could influence the hormone system:

  • Diet: trans fats, sugar, too many carbs, food allergies.
  • Drugs: drug-induced nutrient depletion (over-the-counter drugs, prescription drugs).
  • Physical exercise: frequency and type matters.
  • Environmental exposure: chemicals, pesticides, herbicides, heavy metals, plastics, molds, and pollens.
  • Stress: physical stress, psychogenic stress.
  • Genetics: methylene-tetra-hydro-folate reductase enzyme deficiency (MTHFR mutation), APOE genes, lack of vitamin D
  • Disease: past or present conditions, active disease or syndromes.

Target areas within your system

The target areas in your system are the

  • Pancreas, where blood sugar can rise because of insulin resistance. Too much insulin production causes inflammation, hormone disbalances, kidney damage, and hardening of the arteries through plaque formation.
  • Thyroid gland, which gets activated by TSH (thyroid stimulating hormone), but can also be affected negatively by autoantibodies).
  • Brain: decrease in serotonin resulting in anxiety, depression and food cravings; decreased melatonin causing sleep disturbances; increased ghrelin and decreased leptin secretion leading to overeating and obesity.
  • Liver/kidneys: both of these organs are important for detoxification; the liver produces thyroid binding globulin, which when increased can lower the free thyroid hormones.
  • Immune system (gut, lymph glands): the Peyer’s patches in the gut mucosa produce a large portion of the immune cells; lymph glands, the bone marrow and the spleen supply the rest. A leaky gut syndrome can affect the whole body, causing inflammation and autoimmune reactions.
  • Hypothalamus/pituitary/adrenal glands: this is the main axis of the stress reaction. If the brain is stressed, the hypothalamus sends a cascade of activating hormones via the pituitary gland and the adrenal glands. This leads to cortisol overproduction, and release of epinephrine and norepinephrine from the center of the adrenal glands. High blood pressure, anxiety, heart palpitations, arrhythmias and more can develop from this.

Hypothalamus/pituitary/adrenal glands activation and clinical effects

The main hormone axis of the stress reaction goes from the hypothalamus via the pituitary gland to the outside surface of the adrenal glands where cortisol is released. It is also called the HPA axis. Stressed people make too much cortisol, which weakens immune functions, reduces human growth hormone production, increases belly fat, increases blood pressure and reduces insulin action. Stress also reduces estrogen production in women and testosterone production in men.

The final clinical presentation is osteopenia, then osteoporosis with spontaneous fractures of bones. There is cardiovascular disease leading to heart attacks and strokes, and cognitive decline with memory loss. There are complications with infections. Also the metabolic syndrome can lead to obesity and type 2-diabetes.

Stress and the hippocampus

In the center of our brain there is a memory-processing unit, the hippocampus that converts short-term memory into long-term memory. Repeated stress interferes with normal hippocampus function. High cortisol levels interfere with the proper functioning of the hippocampus causing memory problems.

Chronically elevated cortisol levels from chronic stress have been shown to lead to hippocampus atrophy and can cause Alzheimer’s disease.

Effects of chronic stress

Chronic stress leads to cardiovascular disease, to diabetes, chronic inflammation, Alzheimer’s disease, thyroid disorders, cancer, neurological disorders and autoimmune diseases. Inflammation research has shown that with chronic inflammation tumor necrosis factor-alpha (TNF-alpha) is released, as key player of chronic inflammation. This however leads to the release of other inflammatory kinins like IL6 and others. The resulting chronic inflammation can cause Crohn’s disease, rheumatoid arthritis, insulin resistance, dementia, metabolic syndrome, obesity and atherosclerosis with associated markers (decreased HDL, increased LDL, CRP and triglycerides).

Hormone imbalance causes disease

  1. Excess cortisol production from stress leads to Th2 type inflammatory kinins; usually associated with this is a reduction of DHEA (a male hormone in the adrenal glands), which leads to reduced Th1 type kinins. The end result is chronic inflammation. When chronic stress has tired out the adrenal glands, a four-point salivary cortisol level test shows a flat curve. This indicates adrenal gland fatigue or, if worse, even adrenal gland insufficiency. Such a pattern is found in patients with leukemia, breast cancer, uterine cancer, prostate cancer, pituitary gland cancer and lung cancer.
  2. The metabolic syndrome is associated with dysregulation of the HPA axis. People who have this syndrome have a high morning serum cortisol level. High cortisol increases the risk to develop metabolic syndrome.
  3. Metabolic connections: high cortisol leads to a partial blockage of thyroid hormones, which in turn leads to hypothyroidism. Hypothyroidism will affect glucose tolerance, and if not treated leads to type 2 diabetes.

In a large study involving 46,578 members of Kaiser Permanente Northwest it was determined that for every 1 point above a fasting glucose level of 84 mg/dL there was an additional 6% risk to develop type 2 diabetes over the next 10 years.

Pathological hormone disturbances

The following hormone patterns were discussed in detail, an increased cortisol level, increased insulin level and decreased thyroid levels.

Elevated cortisol

Prolonged elevation of cortisol leads to atrophy of the hippocampus with brain atrophy and Alzheimer’s or dementia. The immune system gets altered, there is lower DHEA hormone leading to weaker muscles and weakened immunity. There is insulin resistance (decreased insulin sensitivity), decreased serotonin and increased depression. Carbohydrate cravings lead to weight gain (central obesity). Changes in the thyroid metabolism leads to hypothyroidism.

Increased insulin level

People who develop high insulin levels are usually sugar or carbohydrate addicts. As they gain weight they change their metabolism into the metabolic syndrome. The extra insulin that is floating around triggers the insulin receptors to become less sensitive (also called “resistant”). The people love to eat. They snack frequently on protein bars and candy bars. As they gain weight, their energy goes down and they often develop painful joints. This prevents them from being physically active. They notice episodes of foggy thinking. Women complain of frequent yeast infections.

The body tries to compensate by slightly decreasing thyroid hormones and slightly increasing cortisol levels.

Decreased thyroid levels

There is increased lactic acid production and decreased insulin sensitivity. Oxidative stress is increased. The patient is depressed and cognition and memory are reduced. The gut has slower motility. The mitochondria, the energy packages in each cell are reduced and functioning less productively. Cardiac function is reduced.

The body tries to compensate for the primary thyroid weakness by slightly elevating insulin and cortisol.

Treatment of stressed hormone system

Before the doctor can treat a disbalanced hormone system, blood tests have to be done that show what kind of hormone constellation is present. Dr. Heyman suggested the following support with supplements.

Treatment of thyroid disorders

Thyroid supplementation may involve any of these: Selenomethionine, iodine, chromium, thyroid glandular, tyrosine, ferritin, Ashwagandha, coleus forskohlii, 7-keto DHEA, ferritin and iron. Other possible supplements that were mentioned by Dr. Heyman were Rhodiola, schisandra, ginseng, Rg3, eurycoma longifolia, neuromedulla glandular, DHEA, tryptophan/5 HTP, licorice, Cordyceps.

This, however, is not all. Missing thyroid hormones have to be replaced with a balanced T3/T4 medication like Armour thyroid.

Adrenal support

The following supplements are used to support adrenals: Adrenal glandular, vitamin C, adrenal cortex extract, Holy Basil, Pharma GABA, Magnolia/Phellodendron, L-theanine, sterols & sterolins.

Pancreatic support

These supplements support the insulin production in the pancreas:

Chromium, vitamin D, magnesium, alpha-lipoic acid, fish oil, micro PQQ, bitter melon, cinnamon, arginine, vanadium, benfotiamine (synthetic derivative of B1 vitamin) and Bergamot.

Dr. Heyman completed his talk by giving a few patient examples, explaining what blood tests showed, what the hormone disbalance was, and which treatment options were helpful.

How Stress Affects Our Hormone System

How Stress Affects Our Hormone System

Conclusion

Dr. Andrew Heyman gave a talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. He talked about how stress affects our hormone system. Symptoms from stress can stem from different causes including hormone disbalances. Conventional medicine would simply treat the symptoms. However, this will not be successful with stress-induced hormone disbalances, because it does not treat the causes. Causal treatment of the hormone disbalance will restore the person’s wellbeing and the symptoms will disappear at the same time. Anti-aging medicine and integrative medicine are attempting to follow this approach.

Incoming search terms:

Mar
11
2017

Obesity And Diabetes Can Cause Cancer

Dr. Nalini Chilkov gave a talk about how obesity and diabetes can cause cancer. The original title was “Integrative Cancer Care, Increased Rates of Cancer and Cancer Mortality Associated with Obesity and Insulin Resistance, Nutraceutical and Botanical Interventions”. Her talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended.

In the following I will present a brief summary of her lecture.

Obesity is a major risk factor for cancer

Obesity causes 14% of all cancer deaths in men and 20% of cancer deaths in women.  This link explains this in more detail. The following 15 cancers were linked to obesity in terms of causation. They are: colon cancer, gastric cancer, gallbladder cancer, ovarian cancer, breast cancer, liver cancer, uterine cancer, endometrial cancer, rectal cancer, pancreatic cancer, cervical cancer, non-Hodgkin’s lymphoma, renal cancer, multiple myeloma and esophageal cancer.

The American Society of Clinical Oncology reported about a meta-analysis involving 82 studies. This involved more than 200,000 women with breast cancer. Premenopausal and postmenopausal women were compared who were obese or normal weight. Premenopausal, obese breast cancer women had a 75% increase in mortality compared to the normal weight breast cancer group. With postmenopausal, obese breast cancer women there was a 34% increase of mortality compared to the normal weight group.

With obese prostate cancer patients there is a similar observation. Obese patients have a more aggressive prostate cancer on the Gleason score and the cancer is in a more advanced stage at the time of diagnosis.

Diabetes increases mortality from cancer

Obesity is a common risk factor for both cancer and diabetes. But diabetes by itself is also increasing mortality of several cancers. In a consensus report details of the relationship between cancer and diabetes have been discussed in detail. The following cancers have been identified to have an increased risk of diabetes: pancreatic, gastric, esophageal, colorectal, liver, gallbladder, breast, ovarian, endometrial, cervical, urinary bladder, renal, multiple myeloma and non-Hodgkin’s lymphoma.

A meta-analysis suggests that cancer patients who are diabetic have a 1.41-fold increased risk of dying compared to those cancer patients who have normal blood sugars. Dr. Chilkov explained in detail what the various mechanism are that account for the faster cancer growth in obese and diabetic patients. High insulin levels is one of the risk factors, so is IGF-1, an insulin-like growth factor. The aromatase enzyme in fatty tissue turns male type hormones into estrogen, which also can stimulate cancer growth.

Carbohydrate restriction diet to prevent obesity

Low carb diets like the Mediterranean diet, the ketogenic diet and the Atkins diet will drop blood insulin and lactate levels. Cancer size and cancer growth are related to insulin and lactate levels. A low carb diet can reduce insulin-mediated uptake of sugar into cancer cells.

Research has shown that cancer metabolism slows down when a 10%-20% carb/high protein diet is consumed by the patient. This reduces the amount of sugar that is taken up by cancer cells. It also reduces insulin, so there is less cancer growth. A ketogenic diet is a more strict way to restrict carbohydrates. Intermittent fasting is also a useful method to reduce carbohydrate intake.

Here is an interesting study that illustrates the power of intermittent fasting. The study involved 2413 patients with early breast cancer who were followed for 7 years. Those breast cancer patients, who consistently did not eat anything between dinner and breakfast for 13 hours or more, had a 36% lower risk of having a cancer recurrence. There was also a 21% lower risk of dying from breast cancer when fasting was done for 13 hours or more overnight.

Supplements to prevent obesity, diabetes and cancer

A low carb diet and in some cases even a ketogenic diet is beneficial as a baseline. A regular exercise program is also useful for general fitness building and cardiovascular strengthening. In addition Dr. Chilkov recommended the following supplements.

  1. To reduce inflammation in the body, Dr. Chilkov recommended taking 2000 to 6000 mg of omega-3 fatty acids per day (molecularly distilled fish oil).
  2. Berberine 500 to 1000 mg three times daily. Dr. Chilkov said that Berberine has anti-cancer properties, improves insulin sensitivity and reduces absorption of sugars in the intestinal tract.
  3. Curcumin inhibits cancer cell division, invasion and metastatic spread through interaction with multiple cell signaling proteins. Several researchers showed that curcumin could lower blood sugar levels by stimulating insulin production from beta cells in the pancreas. Triglycerides, leptins and inflammation in fat cells are also lowered by curcumin. Insulin sensitivity increases through the action of curcumin. Dr. Chilkov recommended 300 mg/day of curcumin for 3 months.
  4. Resveratrol, the bioflavonoid from red wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol is 1000 to 5000 mg.
  5. Green tea catechins (EGCG) help to normalize the glucose and insulin metabolism. The dosage recommended was 1-3 grams per day.
  6. Reishi mushroom (Ganoderma lucidum) contain polysaccharides with antidiabetic and antiobesity effects. They make gut bacteria produce three types of short-chain fatty acids that control body weight and insulin sensitivity.
Obesity And Diabetes Can Cause Cancer

Obesity And Diabetes Can Cause Cancer

Conclusion

Obesity is a risk factor not only for diabetes, but also for cancer. Chronically elevated blood sugars, increased fasting insulin levels and increased IGF1 levels can cause cancer. In addition they can stimulate tumor growth and increase cancer mortality. It is for this reason that the health care provider should screen all diabetics for cancer. In her talk Dr. Nalini Chilkov gave clear guidelines what supplements will be beneficial to reduce the risk of obesity and diabetes as well as cancer. Start with a healthy, balanced diet. Add an exercise program. Then consider some of the above-mentioned supplements to reduce your risk for cancer, diabetes and obesity.

Incoming search terms:

Jan
02
2017

Gut Bacteria Can Protect Your Brain

The neurologist, Dr. David Perlmutter gave a keynote address where he pointed out that gut bacteria can protect your brain. The topic of his actual talk was “Rewrite your brain’s destiny” and the venue was the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Many of the talks centered around the gut microbiome. In this talk Dr. Perlmutter stressed the fact that the right mix of gut bacteria will protect your brain, while the wrong mix can make you sick. There were many slides, but too much information to mention all of details of the talk here. I will summarize the broad outline of Dr. Perlmutter’s presentation and emphasize the practical implications this has for everyday life to prevent degenerative brain diseases.

A few facts

  1. Did you know that the brain uses 25% of the body’s energy, but has only a 3% of the body’s weight?
  2. The gut flora has trillions of gut bacteria with its own DNA material. 99% of the DNA material in our body comes from the gut bacteria and the bacteria on our skin surface; only 1% of the entire DNA in the body is your own DNA. We are eating for 100 trillion bacteria, but if they are good bacteria they provide us with important vitamins and they produce molecules that stimulate our immune system.
  3. This means we better have bacteria in our guts that are friendly, not the bad bacteria that can cause us problems. An Italian study determined the gut flora of children in central Africa (Burkina Faso) and compared the gut flora to children from developed countries in Europe. There was a significant difference with the African children having a healthy microbiome in the gut and the children from developed Europe having unhealthy gut bacteria. This is important new information. Many other research papers have established that leaky gut syndrome and autoimmune diseases are linked to dysbiosis, which is the name for the unhealthy microbiome in the gut.

Chronic inflammation

Dr. Perlmutter showed several slides where literature was cited showing that chronic inflammation in the civilized world is increasing. He also showed that dysbiosis (unhealthy gut bacteria taking over) is also increasing. On several slides Dr. Perlmutter showed that in civilized countries like Iceland, Denmark, Germany, the US, Japan and others the bacterial diversity of the gut bacteria in people was vastly reduced compared to the diversity of gut bacteria of people in Kenya, Ethiopia, Nigeria or rural India. The same countries that have diminished gut bacterial diversity (dysbiosis) also have the highest prevalence of Alzheimer’s disease. On the other hand the same countries with diverse gut bacteria have a low incidence of Alzheimer’s disease. When infestation with parasites was examined there was also a parallel between increased parasitic stress and low Alzheimer’s disease rates, again in countries like Kenya, Ethiopia, Nigeria or rural India. The same countries where gut dysbiosis was present the parasitic infestation was low.

Further research has established that gut dysbiosis leads to an inflammatory condition of the gut where lipopolysaccharides (LPS) from gut bacteria are absorbed causing inflammatory reactions within the body.

At the same time this leaky gut syndrome can cause obesity and leakage in the gut/brain barrier as indicated in this link. The result is neuroinflammation, cognitive impairment and vulnerability to develop Alzheimer’s disease. Our most dreaded brain diseases come from inflammation: Alzheimer’s, Parkinson’s disease, autism, multiple sclerosis etc. These are degenerative brain disorders due to chronic inflammation. If you eat a lot of red meat, sausages and processed foods your gut microbiome will undergo negative changes. If you eat healthy food with lots of vegetables, fruit and you cut out sugar and too many starches, you have a healthy microbiome, which develops a robust immune system. We have to rethink the gut/brain connection and learn how to prevent these chronic illnesses.

Obesity and gut dysbiosis

In the link above it was shown that obesity is associated with inflammation. It was also shown with MRI scans that the part in the brain, called hippocampus was shriveled up (atrophied). This is a typical sign of dementia and Alzheimer’s disease. The investigators also confirmed with mental health functional tests that these patients had cognitive decline.

Another study also noticed that in a group of obese patients the hippocampus part of the brain was shriveled up the more obese people were. Obesity is associated with dysbiosis of the gut flora.

Practical application: the DASH diet and the Mediterranean diet are both healthy, balanced diets, strikingly different from the Standard American diet. In a study the hypothesis was tested whether the DASH diet and the Mediterranean diet would postpone dementia in a group of elderly patients. The answer was: yes, the hypothesis is true.

What does gut dysbiosis do?

It was shown in mice that chronic inflammation of the gut through ingestion of an irritant (dextran sodium sulfate) led to reduced new nerve growth in the hippocampus compared to control animals. It only took 29 days to show a marked difference between experimental and control animals in terms of reduced growth in the nerve cells of the hippocampus, the center of cognitive control.

The negative mediators were inflammatory kinins released from the gut wall and affecting the brain.

Antibiotic treatments and antibiotic residues in milk, milk products, meat, but also in all GMO foods are the irritants of the gut wall in humans. The antibiotics change the gut flora and lead to dysbiosis, which then causes gut wall inflammation and the cascade of events described above. The new finding is that GMO food contains RoundUp (they are “Roundup ready” crops). The herbicide Roundup was originally patented as an antibiotic and still leads to significant dysbiosis. Dr. Perlmutter urged the audience to buy organic food as the only method to reduce our exposure to Roundup. Roundup contributes to causing celiac disease and gluten intolerance in addition to exposure to the modern wheat (Clearfield wheat). The FDA is starting to do testing on foods for Roundup (glyphosate).

If things are sounding bad for Roundup, it only gets worse: Roundup has now been linked to causing cancer. In medicine it usually takes some time before definite action is taken. The agriculture industry is so deeply entrenched in the use of Roundup; I suspect that denial will be the first line of defense. My first line of defense in turn is to stick to organic food.

To sum up: Roundup and the Standard American diet lead to dysbiosis in the gut, which causes leaky gut syndrome. This causes inflammation with the release of cytokines and LPS from the gut wall to the blood. These substances cross the blood/brain barrier and lead to inflammation in the brain. This affects the hippocampus with the classical sign of shrinkage. But Parkinson’s disease, multiple sclerosis, autism in children and Alzheimer’s disease in older people are all caused by chronic inflammation. There are three more brain-related diseases that are related to gut inflammation: stroke, depression and attention deficit hyperactivity disorder (ADHD). Dr. Perlmutter spent some time explaining that antibiotic overuse even leads to an increase of breast cancer as a Danish study has shown. Antibiotic use showed a linear increase of breast cancer as a result of increased antibiotic amounts used. The highest group had a twofold risk compared to a control group with no antibiotic use. Dr. Perlmutter interpreted this to indicate that chronic gut inflammation can even cause a disease like breast cancer.

What can we do to diversify our gut bacteria?

  1. Exercise: A recent study has shown that regular exercise is associated with a diversified gut flora. The reason seems to be the production of butyrate with exercise, which leads to a diversified gut flora. There are reduced LPS levels (lipopolysaccharides from gut bacteria) in people with a higher fitness score.
  2. Eat a DASH diet or the Mediterranean diet as indicated above.
  3. Avoid GMO foods because of the presence of Roundup, which functions like an antibiotic and leads to gut bacteria dysbiosis.
  4. Remember “Antibiotics are weapons of mass microbial destruction”. If you need to take them be careful that you rebuild your gut flora with probiotics. Use of antibiotics increases the risk of type-2 diabetes by 1.53-fold. It also causes a quadrupling of Alzheimer’s disease.
  5. A woman should consider natural childbirth whenever possible, as with a vaginal birth the child is “anointed with gut bacteria”. Vaginally delivered children remain healthier than children delivered by Cesarean section for several years.
  6. Acid-suppressing medications and NSAIDs (anti-inflammatory medication for arthritis) can also lead to dysbiosis. Proton pump inhibitors increase the risk of Alzheimer’s disease by 44%.
  7. Prebiotic fiber can prevent Alzheimer’s. Probiotics do the same.
  8. Avoid sugar: even the Oompa Loompa knew that “If you eat sugar, you get fat” as this YouTube video shows. And obesity is associated with gut dysbiosis with the associated higher risk of degenerative brain diseases.
  9. Take magnesium supplements (250 mg twice per day) and DHA from fish oil capsules. It stabilizes your brain metabolism.
  10. In severe, persistent cases of gut dysbiosis a fecal transplant can be considered by your gastroenterologist. This procedure is done in more than 500 hospitals in the US.
Gut Bacteria Can Protect Your Brain

Gut Bacteria Can Protect Your Brain

Conclusion

The diversity of gut bacteria is immensely important. As discussed, in rural areas of the world there is gut bacteria diversity. In civilized parts of the world dysbiosis of the gut flora frequently occurs. This can lead to gut inflammation and the inflammation eventually gets internalized and can even reach the brain. These are the points to remember: exercise; avoid GMO foods, use prebiotics and probiotics. Avoid antibiotics; also avoid meat from animals that were fed antibiotics for faster growth. Don’t eat processed foods and avoid sugar. A healthy gut creates a healthy body, and this includes a healthy brain as well.

Incoming search terms:

Dec
17
2016

Magnesium Is Essential To Life

Magnesium is an important co-factor in many biochemical reactions, so magnesium is essential to life.

Many diverse diseases and cancers can develop from magnesium deficiency. The key is to supplement with magnesium regularly to get more than the government recommended daily allowance (RDA). The RDA for magnesium is 420 mg a day for males and 320 mg a day for females.

In the following I will review the diseases that occur without enough magnesium on board.

A lack of magnesium can cause heart disease

In this 2014 study 7216 men and women aged 55-80 with at high risk for heart attacks were followed for 4.8 years. The risk of death from a heart attack was found to be 34% lower in the high tertile magnesium group when compared to the lower magnesium tertile group.

The protective mechanism of magnesium was found to be as follows. Magnesium counteracts calcium and stabilizes heart rhythms. Magnesium helps to maintain regular heart beats and prevents irregular heart beats (arrhythmias). It also prevents the accumulation of calcium in the coronary artery walls. This in turn is known to lower the risk of heart attacks and strokes.

Another study, which was part of the Framingham Heart Study, examined calcification of the heart vessels and the aorta as a function of magnesium intake.

There were 2,695 participants in this study. For each increase of 50 mg of magnesium per day there was a 22% decrease in calcification of the coronary arteries. For the same increase of magnesium the calcification of the body’s main artery, the aorta, fell by 12%. Those with the highest magnesium intake were 58% less likely to have calcifications in their coronary arteries. At the same time they were 34% less likely to have calcifications of the aorta.

In a Korean study a group with low magnesium levels was at a 2.1-fold higher risk of developing coronary artery calcifications compared to a group with normal magnesium levels.

Low magnesium increases your stroke risk

In a 2015 study 4443 subjects, men and women aged 40-75 were followed along.

928 stroke cases developed. The group with the highest 30% of magnesium intake was compared with the lowest 10% of magnesium intake. They had significantly lower blood pressure (7 mm mercury) and lower total cholesterol levels. They also had 41% less strokes than those with low magnesium intake.

In a 2015 study that lasted 24 years the authors investigated 43,000 men.

Those with the highest magnesium supplement had a 26% lower stroke risk. They had been compared to those with the lowest magnesium intake.

Among women low magnesium levels were shown to cause 34% more ischemic strokes than in controls.

This study was from 32,826 participants in the Nurses’ Health Study who were followed for 11 years.

It is clear from all these studies that supplementation with magnesium can prevent strokes.

Magnesium protects kidney function

This study examined 13,000 adults for 20 years to see how kidney function was dependent on magnesium levels. Those with the lowest magnesium levels had a 58% higher risk of developing chronic kidney disease. It makes sense when you consider that magnesium is needed to keep arteries healthy, blood pressure low, and blood sugars stable. In diabetics where blood sugar is not controlled kidneys develop kidney disease. This is called diabetic nephropathy. In the presence of magnesium supplementation and a low sugar diet people are less likely to develop diabetes or kidney disease.

Magnesium helps blood sugar control

A metaanalysis showed that magnesium supplementation was able to improve blood sugar control. This occurred in both diabetics and borderline non-diabetics within 4 months of supplementing with magnesium.

Magnesium has been known in the popular press to be an important factor in helping control blood sugar. Here is an article as an example.

Magnesium good for bones and teeth

Magnesium is important for calcium metabolism and this is helping your bones and teeth to stay strong. About half of the body’s magnesium is stored in bone. Teeth are the other location where a lot of magnesium is found.

Low levels of magnesium lead to osteoporosis, because one of the two structural components of bone (calcium and magnesium) is missing. In addition low magnesium causes inflammatory cytokines to increase. These break down bones. The Women’s Health Initiative showed that when daily magnesium intake exceeded 422.5 mg their hip and whole-body bone mineral density was significantly greater than in those who consumed less than 206.6 mg daily.

With regard to healthy teeth magnesium is important as it prevents periodontal disease.

This study found that there was less tooth loss and there were healthier periodontal tissues in 4290 subjects between 20 and 80.

Those who took magnesium supplements had healthier teeth.

Migraine sufferers improve with magnesium

A double blind randomized study showed that magnesium supplementation can reduce migraines. In this trial 600 mg of magnesium supplementation was used for 4 weeks.

This reduced migraines by 41.6% in the magnesium group compared to the non-supplemented control group.

Another study showed that both intravenous and oral magnesium are effective in reducing migraine headaches.

Intravenous magnesium showed effects on improving migraines within 15 – 45 minutes. The authors concluded that both oral and intravenous magnesium could be added as a supplement to other migraine treatments.

Cancer can be caused from too little magnesium

You may be surprised to hear that magnesium can even prevent some cancers. Two cancers have been studied in detail. I will limit my discussion to these two.

Pancreatic cancer

One study found that pancreatic cancer was reduced. 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After 11.3 years on average 396 men and 469 women came down with pancreatic cancer. On the male side they found that when the body mass index (BMI) was greater than 25.0 there was a 21% reduction of pancreatic cancer for every 100 mg of added magnesium per day. There were a lot of smokers on the female side, which interfered with the study as confounding factors undermined statistical validity.

In another study, the US male Health Professionals Follow-up Study was examined after 20 years of follow-up. Those with a BMI of above 25.0 on magnesium supplementation had a reduced risk of pancreatic cancer. The pancreatic cancer rate in the higher magnesium group was 33% lower than in the lower magnesium group. The higher group consumed 423 mg of magnesium daily, the lower group 281 mg per day. It is significant that in both studies it was the heavier patients who came down with pancreatic cancer. It is known that obesity is a pancreatic risk factor.

Colorectal cancer

A study done on Japanese men showed that magnesium could protect them significantly from colon cancer.

Men who consumed the highest amount of magnesium developed 52% less colon cancer over 7.9 years. They were compared to the group with the lowest 20% intake of magnesium. The women in this study did not reach statistical significance.

A study from the Netherlands examined colon cancer in patients. They found that only in patients with a BMI of greater than 25.0 magnesium did have protective effects. For every 100 mg of magnesium per day increase there was a 19% reduction of colon polyps. And there was also a 12% reduction of colorectal cancer for every 100 mg increase of magnesium per day.

Magnesium plays an important role in genome stability, DNA maintenance and repair. It also prevents chronic inflammation and reduces insulin resistance, all factors contributing to cancer reduction.

Live longer with magnesium

Consider that magnesium is the fourth most common mineral in the body. Add to this that magnesium is a co-factor of more than 300 enzymes in the body. Magnesium is required as an important co-factor in the conversion of chemical energy from food that we ingest. Magnesium is regulating blood sugar, blood vessel health and our brain electrical activity. 50% of our stored magnesium can be found in our bones, which helps the strength and integrity of them.

Because of the distribution of the enzymes that are helped by magnesium to function properly, virtually every cell in the body depends on our regular intake of magnesium.

Since the 1950’s soils are depleted of magnesium where vegetables are grown and fruit trees are raised. We simply do not get enough magnesium from food.

But chelated magnesium is freely available in health food stores. Take 250 mg twice per day, and you will have enough.

Because our metabolism slows down, there is a critical age where magnesium deficiency becomes more obvious than when we are younger. By the age of 70 there are 80% of men and 70% of women who do not get the minimum of magnesium-required amount they should get (350 mg for men and 265 mg for women).

At this age many people are on multiple drugs. For many proton pump inhibitors (PPI) are used to suppress acid production in the stomach. PPI’s have been associated with low magnesium blood levels.

This link explains that PPI’s should not be used for longer than 1 year.

Low magnesium levels accelerate the aging process on a cellular level. Low magnesium levels increase senescent cells that can no longer multiply. Some of them could cause the development of cancer. These senescent cells also can no longer contribute to the immune system. This causes more infections with an adverse outcome.

Remember to take chelated magnesium capsules or tablets 250 mg twice per day and you will be protected from low magnesium levels in your body.

Here is why we live longer with magnesium supplementation

Our blood vessels will not calcify as early; they keep elastic for longer, preventing high blood pressure. Our kidneys will function longer with magnesium, preventing end-stage kidney disease. We need our kidneys to detoxify our system! The more than 300 enzymatic reactions all over our body help that we have more energy and that cancer is prevented. When there are fewer strokes and less heart attacks this helps reduce mortality. It also helps that there is less of a risk for Alzheimer’s disease with magnesium supplementation, because insulin resistance is reduced, which has been shown to prevent Alzheimer’s disease.

The bottom line is we live longer and healthier; that is what is meant with longevity.

Magnesium Is Essential To Life

Magnesium Is Essential To Life

Conclusion

Magnesium is a key essential mineral. It balances calcium in the body and participates in many enzymatic reactions in the body as a cofactor. As long as we have enough of this mineral we won’t notice anything. It is with magnesium deficiency that things go haywire. You could get heart disease or a stroke. You could get kidney disease. You even could get pancreatic cancer or colorectal cancer. If this is not enough, magnesium deficiency can cause diabetes, osteoporosis and bad teeth. You may suddenly die with no obvious cause. But, if your magnesium blood level is balanced from regular supplements, you will carry on living and eliminate a lot of health problems.

Incoming search terms:

Dec
11
2016

Cancer Rates Increased In Women

A recent review of cancer rates worldwide shows that cancer rates increased in women. This by itself is alarming, but based on that data the rates likely will go up by 60% in the year 2030. The main reason is the smoking discrepancy among women and men. Men as a group have been smoking more than women. But women as a group are more and more embracing smoking. All of the negative health consequences of the last 3 decades for men are just starting to show now for women as well.

The World Health Organization explains it this way: in high-income countries like Australia, Canada, the US and Western Europe women smoke at nearly the same rate as men.

But in low and middle income countries women do not smoke as much as men do. For instance in China 61% of men are smokers, but only 4.2% of women are smoking. In Argentina 34% of men are currently smokers, which compares to 23% of women who smoke in this country.

When this gap will close, likely by the year 2030 women will have a whole host of diverse cancers, heart attacks and strokes caused by the smoking habit.

Some statistics and facts

High-income countries like Australia, Brazil, Canada, Israel and many northern and western European countries have a 5-year survival rate for breast cancer of 85%. In contrast the 5-year survival rates are 60% or less in low- and middle-income countries like South Africa, Mongolia, Algeria and India.

Cancer prevention measures can make a big difference later in life. Examples are hepatitis B vaccination, which will prevent liver cancer; vaccinating boys and girls against HPV, which will prevent cervical cancer in women; also having regular mammograms will detect breast cancer earlier and improve breast cancer survival rates.

Dr. Nestor Esnaola, surgical oncologist at Fox Chase Cancer Center at Temple University Hospital, Philadelphia, PA said that the cancer prevention methods just mentioned might not be available in developing countries. Instead of mammographies repeat breast self-examinations are more important there. Campaigns against smoking can be utilized in order to prevent cancer of the lungs, the throat and neck. And if colonoscopies are not available, stool samples can be tested for blood and hemoglobin to check for colon cancer.

Different cancer rates increased in women in different countries

There are different cancer types that make the top chart for different countries. For instance in 2012 breast cancer was on top of most countries worldwide as the number 2 killer behind heart attacks and strokes. But other cancers ranked fairly high as well as causes of death: colorectal, lung and cervical cancers.

Despite this trend there were other countries like China and North Korea that had a higher incidence of lung cancer rather than breast cancer. The cancer researchers stated that the reason for this is that the smoking rates are higher in these countries. As already pointed out in China more than ½ of the men smoke, but only a small minority of the women smoke. But women in China are exposed to high amounts of secondhand smoke in addition to environmental pollution, which still causes a lot of lung cancer in women who live in this environment.

In many African countries cervical cancer is very common. Women, who are HIV positive, have a 5-times higher rate of cervical cancer. Southern and eastern Africa where there are higher rates of HIV, have higher rates of cervical cancer.

More data about women’s cancer rates

The American Cancer Society has produced a report entitled “Global Burden of Cancer in women, current status, trends, and interventions”, which points out some interesting statistics.

The greatest numbers of cancer cases and deaths occur among women in Eastern Asia. The estimate for 2012 worldwide was for 1.7 million cancer cases and 1 million deaths in women. China dominated its region with 75% of all female cancer cases and deaths in the region. In North America cancer cases and deaths within the US comprise 90% of the region. The cancer cases and deaths in India make up about 65% of the region of South-Central Asia.

The top mortality rates are found in low to medium income countries, namely in Zimbabwe, Malawi, Kenya, Mongolia and Papua New Guinea.

The most frequently diagnosed cancers in women are breast, lung, and colorectal cancers in economically more developed countries. However, the statistics are different for less developed countries where the top three most diagnosed cancers are breast, cervix, and lung. Similarly the leading causes of cancer deaths for women in developed countries are lung, breast, and colorectal cancers. In developing countries the leading causes of cancer deaths for women is cancer of the breast, lung, and cervix.

Cancer frequencies for women in different countries

The American Cancer Society reports that breast cancer is the most common diagnosed cancer among women in 140 countries. Cervical cancer is most common in 39 countries, all of which are low to medium income countries. There are some countries where other cancer types are more common. For instance in China and North Korea lung cancer is more common among women, in Mongolia and Laos liver cancer, and in South Korea it is thyroid cancer.

The most common cause of death from cancer in women is breast cancer in 103 countries, cancer of the cervix in 43 countries and lung cancer in 27 countries. Other most common cancer deaths in women are in the following countries:

  • Stomach cancer: in Bhutan, Peru, El Salvador, Guatemala, and Tajikistan
  • Liver cancer: in Laos, Mongolia and The Gambia
  • Colorectal cancer: in Japan and Slovakia
  • Esophagus cancer: in Turkmenistan.

Prevention and early detection

Changing the risk factors could modify 20% of breast cancer mortality worldwide. Avoiding excess body weight, physical inactivity and reducing alcohol consumption could all significantly reduce breast cancer mortality. For instance, women with a body mass index of greater than 35.0 have a 1.6-fold higher risk of breast cancer and a 2.1-fold higher mortality rate from breast cancer than women with a body mass index of less than 25.0.

Regular breast cancer screening with mammography is another tool that will reduce breast cancer mortality as the cancer is diagnosed earlier and treated at an early stage where it can often be cured. The WHO recommends for those countries where mammography programs are established that screening should be done only every two years and only between the ages of 50-69 to avoid X-ray over exposure.

Early detection, like for any cancer is the key for successfully treating breast cancer. When the cancer is found early, surgical removal in healthy tissue (lumpectomy) often cures breast cancer. Unfortunately in low to medium income countries the cancer is often found too late, requires more invasive mastectomies and radiotherapy and has a lower survival rate than in developed countries.

Cervical cancer

Cervical cancer accounts for the 4th most frequently diagnosed cancer in the world. In 2012 there were 527,600 cases diagnosed worldwide and 265,700 deaths from cervical cancer occurred in the same year. 90% of cervical cancers occur in developing countries with India accounting for 25% of the total cases. The key in detecting cervical cancer is a regular screening program. In developed countries where this has been in place cervical cancer incidence has decreased by 80% in 4 decades. At the other end of the spectrum are countries like Uganda, Zimbabwe, and some countries of Central and Eastern Europe where cervical cancer rates have been climbing. The reason for the spread is that the human papillomavirus (HPV) is now more common and screening methods for cervical cancer are not in place. HPV 16 and 18 are the most common carcinogenic subtypes of the human papilloma viruses; they are responsible for 70% of cervical cancers worldwide. By vaccinating teenagers before they engage in sex is a powerful tool to interrupt the infectious spread of an important risk factor for cervical cancer.

Instead of the traditional Pap test from the past the new test that is used now is an HPV-DNA test, a cervical swab that will detect DNA from HPV directly. It is more sensitive than the traditional Pap test. If the HPV-DNA test is positive, the patient is sent to a gynecologist who will perform a colposcopy test, which is a microscopic exam of the cervix. The gynecologist can use several effective treatment methods like a loop electrosurgical excision procedure, laser ablation therapy, cryotherapy or conization for deeper cervical cancer lesions.

As with any cancer early detection and treatment is paramount with cervical cancer. In developed countries the 5-year survival rate is 60 to 70%. In India the 5-year survival rate is 46%.

Cancer of the lung

In 2012 there were 583,100 cases of lung cancer in women worldwide and 491,200 died from it. Lung cancer is the second leading cause of cancer death in women and the third most common cancer. The statistics of lung cancer reflect the tobacco epidemic. It takes about 20 to 30 years after widespread smoking begins in a country before the deadly statistics set in. The peak of the cancer epidemic and the heart attack rates occurs about 30 to 40 years following the peak of smoking in that population.

Lung cancer rates in women have lagged behind men, because women as a group have started smoking later. In places like Hong Kong, the United Kingdom,

Australia, and the United States women started smoking earlier, and they are in the process of declining their smoking habit or quitting. This is reflected in the new lung cancer cases and also in the lung cancer mortality rates. Sadly, in many countries of Europe and Latin America women started smoking much later and they are still increasing their lung cancer statistics and mortality rates. Lung cancer killed 1.1 million men and 0.5 million women worldwide in 2012. In addition it is estimated that there are 21,400 lung cancer deaths annually from second-hand smoke in non-smokers worldwide.

Beside smoking there are other risks causing lung cancer. The estimated risk for women to die in millions is: exposure to household air pollution, 1.6; outdoor air pollution, 1.4; second-hand smoke, 0.35; occupational risk factors, 0.10; and residential radon, 0.03.

Cancer Rates Increased In Women

Cancer Rates Increased In Women

Conclusion

Women are still in the midst of a global increase of cigarette smoking, which starts often with female teenagers. As long as the smoking rate goes up there will be more breast cancer, lung cancer and cervical cancer. The American Cancer Society provided a detailed review of various cancers and how they are still increasing worldwide, because nobody pays attention to preventative measures. A simple step to prevent cancer is to quit smoking. Another step is to engage in regular physical activity. Finally keeping your body mass index under 25.0 is a third step that can be done by adopting a Mediterranean diet.

There are several pockets within the developed countries where cancer rates are coming down, which is encouraging. The initial overview and the three examples given here, breast cancer, cervical cancer and lung cancer were thought to illustrate this complex topic.

Incoming search terms:

Nov
19
2016

New Breast Cancer Cure?

According to the popular press there is a new breast cancer cure. But we have to be careful with general statements like this. First of all, only 20% of breast cancers are HER2 positive. When the surgeon biopsies breast cancer, the sample is sent to the pathologist. Out of 100 samples, 20 come back with the finding that it is HER2 positive breast cancer.

Herceptin ® (trastuzumab), the first step of breast cancer cure

Trastuzumab is a monoclonal antibody that interferes with the HER2 receptor. Its main use is to treat HER2 positive breast cancers. But trastuzumab (brand name Herceptin ®) has serious side effects. In early HER2 positive breast cancer it can cause heart failure in 5.7–35.4% of patients, while it can cure breast cancer with a 35% cure rate of Her2-positive patients. It is significant to note that many of the studies used trastuzumab in combination with the chemotherapeutic agent anthracycline concomitantly. Anthracycline by itself has some cardio-toxic effect. Most of the studies that investigated heart toxicity of trastuzumab used this monoclonal antibody for 52 weeks. Newer studies show that as little as 9 weeks can be as effective in tumor cures, which reduces the risk of toxic effects on the heart to 2.2–2.3%.

Here is a link that shows visually what the effect of Herceptin ® may be on the HER2 surface marker in a woman with this type of breast cancer.

Lapatinib (Tykerb ® or Tyverb ®), the second step of breast cancer cure

Absorption of aging cancer cells, called apoptosis, is inhibited by overexpression of oncogenic receptor tyrosine kinases. These are proteins that normally function to remove dying cells at the end of their life span. In HER2 breast cancer these kinases are particularly common and are responsible for the cancer cell survival. Lapatinib is a dual tyrosine kinase inhibitor, which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways. Expressed in simpler terms, it removes dying cancer cells, so they cannot get reactivated or continue to survive.

A phase 3 clinical trial was done with Lapatinib and a chemotherapeutic agent, capecitabine (brand name Xeloda ®).  When the two drugs were combined there was a 51% reduction in the risk of the disease progression.

Herceptin ® and Lapatinib combined as new breast cancer cure

At the 10th European Breast Cancer Conference in Amsterdam professor Nigel Bundred reported about a trial involving 257 women with newly diagnosed, operable, HER2 positive disease. They were recruited between November 2010 and September 2015. Their biopsies were taken and the surgery was scheduled for 2 weeks later.

The trial was in two parts: The first 130 women were treated with trastuzumab (Herceptin ®) only, or lapatinib (Tyverb ®) only, for 11 days after diagnosis and before surgery. From other trials evidence became known that the combination of trastuzumab and lapatinib had better survival rates. The investigators decided to include a second part into their trial starting August 2013 with 127 women. Part of this trial was a combination treatment of trastuzumab and lapatinib.

Samples of tissue were taken from the original breast biopsies and then again two weeks later from the material of the breast surgery.

The pathologist examined the breast cells for a drop in the Ki67 protein, an indicator of cell proliferation. They also looked for an increase of apoptosis of 30% or more from the first date of the first biopsy. A “pathological complete response” was the term they used for a cure. When there was a partial cure, this was termed “minimal residual disease“. This meant that the tumor was less than 5 mm in diameter at the time of surgery. Women who had received the combination treatment had 11% pathological complete response (11% cure rate). 17% of the combination therapy group had minimal residual disease. There was no cure for those randomized to only trastuzumab and only 3% of that group had minimal residual disease.

New Breast Cancer Cure?

New Breast Cancer Cure?

Conclusion

Essentially this new research shows that two inhibitor drugs together are better than one or one in combination with conventional chemotherapy.

But we have to keep in mind that HER2 breast cancer includes only 20% of all types of breast cancer. When you hear that 11% of HER2 breast cancer was cured with the combination therapy in 11 days, it translates into only 2.2% of all types of breast cancer cured and only 3.4% of all breast cancer cases had minimal residual disease (tumor size less than 5 mm in diameter). This could be easily removed by surgery.

What everybody is excited about are the cures of 2.2% of all types of breast cancer (or 11% of HER2 breast cancer). This is a good start. But much more research needs to be done to increase this number of cures. While we are seeing some progress for one group of breast cancer patients, it is not nearly sufficient to advertise this treatment as a “cure”.

For all breast cancers a more promising option is available. A study from Wayne State University, Detroit, Michigan has shown that cryoablation therapy for breast cancer without excision can give a much higher cure rate of 100% over a period of 1 ½ years. In this procedure the tumor is left in place, but killed by cryotherapy (extreme local cold temperatures). It gives a cosmetically superior result. This is an accepted alternative, but is not yet widely practiced.