Aug
25
2018

The Downside Of Living To 100

A review article has examined longevity and reviewed the downside of living to 100. In their 80’s about 10% of the population live in nursing homes, but among centenarians 55% are residing in nursing homes. They are often very lonely, as their social circles have shrunk as they aged.

Common diseases of older people

Osteoarthritis makes it difficult for people to get around, it causes chronic pain and it can also be the reason for falls. In 1990 there were 213.4 cases of osteoarthritis per 100,000. 26 years later, in 2016 there were 232.1 cases of osteoarthritis per 100,000 people.

Chronic obstructive pulmonary disease (COPD) has been falling, because less people smoke cigarettes now. Statistics show 1667 cases of COPD per 100,000 in 1990, but only 945 cases of COPD per 100,000 in 2016.

Diarrhea and common infections have dropped sharply from 8951 per 100,000 in 1990 to 3276 per 100,000 in 2016.

What other common diseases do older people get?

There are a number of common diseases that affect the elderly.

Osteoarthritis

Osteoarthritis of the hips and the knees are common, but it can affect every joint in the body. In the end stage knee replacements or hip replacements may be necessary. But before a total knee replacement or total hip replacement can even come into consideration, the person’s heart needs a thorough checkup to ensure that it is safe for the patient to undergo surgery under a general anesthetic.

Heart disease

Older people often have heart disease.

When coronary arteries are narrowed, heart attacks occur. Cardiologists can place stents, so that previously narrowed coronary arteries receive normal blood flow. Following such a procedure the patient may live for another 10 to 15 years.

There are also heart valve calcifications. The aortic valve is particularly endangered. A heart surgeon may be able to replace a diseased aortic valve by a porcine valve.

The nervous system of the heart transmits electrical signals from the sinus node to the muscle fibers, which can get diseased. Heart rhythm problems may necessitate the insertion of a pacemaker.

Finally, the heart may enlarge, but pump less blood than before. This condition is congestive heart failure. The 5-year survival for this condition is only 50.4%. Unfortunately there is very little the doctor can do for patients like this.

Cancer

The older we get, the more DNA mutations we accumulate. At one point cancer develops. If the diagnosis happens at an early stage there is a good chance that surgery can remove a cancerous growth, and the patient survives. But there are cancers that are notoriously difficult to recognize in the early stages. These are: cancer of the pancreas, kidney cancer, stomach cancer and certain types of leukemias.

Respiratory diseases

Those who smoked earlier in life may develop chronic obstructive pulmonary disease (COPD). It is a chronically disabling lung disorder. Often these individuals have to carry an oxygen tank with them wherever they go. The 5-year survival rate for people with COPD is 40 to 70%.

Osteoporosis

Osteoporosis is a disease where the bone is brittle. Spontaneous bone fractures can occur at the wrists, the upper thigh bone (femoral fractures) or in the vertebral bones. Women in menopause are hormone deficient and this contributes to calcium depletion of the bones. Lately research has shown that vitamin K2 and vitamin D3 are necessary for a normal calcium metabolism. Briefly, 200 micrograms of vitamin K2 and 5000 IU of vitamin D3 every day are the necessary dosage that the body can absorb calcium from the gut, eliminate it from the blood vessels and deposit it into the bone. Calcium is present in milk products and milk. If a person does not consume enough milk products a supplement of 1000 mg of calcium daily does make sense.

Alzheimer’s

The older we get, the more likely it is an onset of Alzheimer’s or dementia. Between the ages of 90 to 94 there is a yearly increase of Alzheimer’s of 12.7% per year. The group from age 95 to 99 years has a yearly increase of Alzheimer’s of 21.2% per year. Persons aged 100 years and older have an increase of Alzheimer’s by 40.7% per year. What this means is that essentially there is a doubling of Alzheimer’s every 5.5 years. We do not have all of the answers why this is happening and why Alzheimer’s develops. But we do know that diabetics are more likely to develop Alzheimer’s. High blood sugar levels and high insulin levels seem to lead to the precipitation of the tau protein in the brain, which causes Alzheimer’s.

Diabetes

When diabetes is not well controlled, there is accelerated hardening of the arteries. This can cause heart attacks and strokes. Longstanding diabetes can affect the kidneys (diabetic nephropathy, kidney damage) and can lead to hardening of the leg arteries. Often the only treatment left is a below knee amputation. Blindness from uncontrolled diabetes is common and pain from diabetic neuropathy as well.

Diabetics have an average life expectancy of 77 to 81 years. However, if they pay attention to their blood sugars and manage their diabetes closely they can live past the age of 85.

Falls and balance problems

As people age, their balance organ is not functioning as well. Also, people with high blood pressure medication may have postural hypotensive episodes that can lead to falls.

There may be a lack of cognitive functioning and misjudging of steps, ledges and irregularities in the floor. When a person has brittle bones from osteoporosis and they fall, a hip fracture is very common. At a higher age surgery for a hip fracture is dangerous. It can have a mortality of 50%.

Obesity

A person with obesity has a life expectancy that is 10 years less than a person without obesity. The reason for this is that with obesity This is so, because the risk of heart attacks, strokes, cancer, arthritis and diabetes is increased.

Depression

Older people often get depressed. It even has its own name: involutional depression. People can get into a state of mind, where they think negatively. Depressed people feel that they have nothing to live for. They lost friends; they are shut in because they can’t drive a car any more. This type of depression needs treatment by a psychologist or psychiatrist. The danger of leaving depression untreated is that the person may get suicidal. In older people depression is often precipitated by physical health problems.

Oral health

When teeth are not looked after, gingivitis and periodontitis can develop. Infected gums can shed bacteria into the blood and this can affect the heart valves. Endocarditis, the infection of heart valves, is a cardiological emergency. Prolonged antibiotic therapy is necessary to overcome this condition.

Poverty

Poverty has real consequences. The aging person may not have access to the optimal medical care facility because of a lack of funds. But even at a younger age there is evidence that people are healthier when they are wealthier.

Shingles

Older people often get shingles, even if they had chickenpox or shingles as a child. This is evidence that the immune system is getting weaker. Shingles in an older person should alarm the treating physician that there could be an underlying cancer. Due to that knowledge a cancer-screening tests should be part of the medical exam. In addition, a varicella vaccine should be offered to the patient to build up immunity.

The Downside Of Living To 100

The Downside Of Living To 100

Conclusion

Living to 100 is often glorified in the press. Maybe you have seen a 90-year old jogger completing a marathon, or you saw an 85-year old couple ballroom dancing. But what they don’t show you is what I summarized here, the less glamorous things about living to 100. You may get a heart attack or a stroke. Osteoarthritis may affect you how you walk. Congestive heart failure may make you get short of breath when you walk upstairs. Then there are various cancer types that are difficult to diagnose early.

If you have smoked in the past, you may suffer from chronic obstructive pulmonary disease (COPD), which leaves you breathless.

Other illnesses

Osteoporosis can lead to spontaneous fractures. Because the bone has a lack of calcium, this is difficult to treat and takes a long time to heal.

Alzheimer’s is ever so much more common when you approach the year 100. There are other medical conditions you can get: obesity, diabetes and depression. When you get shingles for the second time, it may mean that your immune system is getting weak and a cancer-screening test should be done.

There are some downsides when you approach the age of 100.

Know your risks and be vigilant

You may keep your physician busy checking out various age-related illnesses, but more importantly, get regular check-ups and tests. Any condition is easier to treat with an earlier diagnosis! The message for anybody reading this is very simple. Prevention through healthy living is something you can actively pursue. Keep your body and your mind busy. Enjoy time with friends and family instead of living a solitary existence. See the glass that is half full instead of viewing it as half empty. Stick to a healthy diet. Knowing all the risks is not a scare but a call to being vigilant. Knowledge is powerful and will help you to enjoy your golden years feeling well and happy.

Incoming search terms:

Jun
02
2018

Combatting Aging using Artificial Intelligence

I found an article dealing with combatting aging using artificial intelligence. It comes from the April 2018 edition of the Life Extension Magazine.  Both of those concepts sound intriguing: “combatting aging”. It would be nice, if this would be a possibility! And “artificial intelligence” (A.I.) sounds mysterious. LifeExtension researchers have partnered up with an A.I. group, called Insilico Medicine.

Why did Life Extension engage in this project? Many people have side effects with the drug metformin, which is an old diabetes drug. It turns out that metformin stimulates anti-aging genes that help to elongate telomeres and also activate genes that prolong lives otherwise. The thought was to find out how exactly metformin protects against age-related disorders. Once researchers located the genes, they may be able to find herbs that can do the same as drugs with less side effects. Often herbs are safer than drugs.

Background regarding metformin

The FDA accepted metformin (trade name Glucophage) as the first-line therapy for type 2 diabetics, particularly if they are overweight or obese.

Side effects include gastrointestinal irritation with vomiting, cramps, diarrhea and flatulence. Even though this drug is not new, research does not fully understand all metabolic effects of metformin.

Promise of metformin as an anti-aging drug

A trial in Great Britain found that metformin has an interesting anti-aging effect. Diabetics on metformin lived longer than a control group of patients without diabetes who were not on metformin. The diabetics lived 15% longer than the controls. Further experiments with human cells and animal experiments showed that metformin is able to stimulate the mitochondria without producing as many free radicals. Free radicals cause inflammation that leads to heart attacks, strokes, Alzheimer’s and cancer. The suggestion is that all of these diseases will be suppressed when the patient is on metformin.

Mimicking the effects of metformin with three herbs

The co-operative research between the Life Extension researchers and Insilico Medicine researchers concentrated on finding data that would replace the beneficial effects of metformin with three herbs stimulating the same life-prolonging targets in human cells. This is not a small task. The following three herbs in combination cover more than 78% of the actions of metformin.

Withaferin A (found in Ashwagandha)

Weight loss

Withaferin A is a component of the life-prolonging herb ashwagandha. This herb is in use in Ayurvedic medicine because of its ant-inflammatory action; it is also anti-diabetic, anti-cancer, anti-obesity and has appetite-regulating activities. An important observation by researchers was that within 21 days of exposing obese mice to withaferin A they lost 23% of their weight. Other mice on the same diet received control solutions and did not lose weight.

Effect on neurodegenerative disease

There is a neurodegenerative condition, called Lou Gehrig disease (=amyotrophic lateral sclerosis). A group of mice that were the subjects of genetic modification to develop Lou Gehrig disease received withaferin A in their food. Compared to controls without withaferin A they had a 39% reduction of damaged proteins in their spinal cords. They also had 60% less loss of motor nerve cells. These are the nerve cells that pass on the electrical signals between the brain, the spinal cord and into the muscles. The life span of these animals that received withaferin A was 5.4% longer than control animals.

Ginsenoside (found in Ginseng)

The structure of ginsenoside is steroid-like. As the name already suggests, it is present in ginseng. The Insilico Medicine team noticed that it affects many of the same age-decelerating pathways like metformin. Ginsenoside prevents damage to the DNA and prevents loss of mitochondria, particularly in the brain and heart. In cancer cases ginsenoside also suppresses cancer stem cells, which slows down cancer growth. All in all ginsenoside reduces inflammatory changes; it also fights neurodegenerative diseases, cardiovascular diseases and cancer.

Gamma linolenic acid (present in borage seed oil)

Gamma linolenic acid (GLA) is a fatty acid. The source of it is the evening primrose plant, black currant oil or borage. The Insilico Medicine researchers found that many pathways that metformin triggers are also responding to GLA. GLA can reduce inflammation, help with adaptation to stress can modulate metabolism and participates in regulation of gene expression. GLA is also part of energy sensing in diabetes and obesity. It also can slow down cancer development.

Discussion

One has to be cognizant of the fact that LifeExtension is in the business of selling herbal supplements. It would be in the company’s interest to find an herbal combination that mimics what Metformin does. They say they have found it; so we are told in the April 2018 article of the LifeExtension magazine. But a 78% overlap of actions when the herbs were compared to metformin is not a 100% overlap.

Conflict of interest

There seems to be a conflict of interest between doing basic research on anti-aging and marketing an anti-aging product. I like to see confirmation of these findings by other independent researchers. I am not too keen to spend $1.40 every day for the rest of my life in the hopes that this herbal concoction would slow down aging. Also to state that this mix of three herbs would do the same as Metformin is a large leap of faith. At this point I am not even ready to swallow metformin just because of one trial in England that showed a beneficial anti-aging effect.

Combatting Aging using Artificial Intelligence

Combatting Aging using Artificial Intelligence

Conclusion

The old dream of finding a pill for anti-aging is alive and well. If you believe this research you are likely to buy this pill and keep on taking it for the rest of your life. But I am not so certain that either swallowing metformin or swallowing this herbal concoction will do what the researchers were hoping for. They have done some basic research with mice and rats. But they tested each of the herbs  separately, and the researchers have then mixed the herbs and claim, that this mix will do what each single herb in isolation has done. We do not know anything about the interaction between these herbs. We do not know whether there will be the same anti-aging results with the mix. All these claims are yet subject to more testing.

Proposed clinical trial

I like to see a human trial where the anti-aging pill of Life Extension is given once per day for several years (let’s say 5 years). After that anti-inflammatory indicators, telomere length and toxicity should be tested in each subject that is part of the study. If trials like this were successful in humans, I would consider buying this new supplement, but not any earlier!

Incoming search terms:

Jan
27
2018

Bacterial Toxins Threatening The Brain

Dr. Robert G. Silverman gave a talk about bacterial toxins threatening the brain. He spoke at the 25th Annual World Congress on Anti-Aging Medicine in Las Vegas on Dec. 15, 2017. First of all, he pointed out how changes in the gut flora can affect the integrity of the gut wall. In addition this can eventually this lead to a leaky gut syndrome. But it does not end here. As a result the toxins enter the blood stream and affect the blood/brain barrier. Consequently in the end various neurological diseases can develop from this.

Here I am giving a brief overview of the talk by Dr. Silverman. But he was not the only one speaking to this subject. Several other speakers also brought up this subject throughout the conference. They stressed the importance of rectifying any gut dysbiosis to stop leaky gut syndrome and a leaking blood/brain barrier.

Leaky gut syndrome

When the gut flora changes there are often enteropathogenic E. coli strains, Shigella and Salmonella that invade the lining of the gut causing leaky gut syndrome. When toxins enter the blood stream, the body is starting to form antibodies against various proteins. Antibodies are acting against various targets: bacterial cytotoxins, cytoskeletal proteins, tight junction proteins and food antigens. Lipopolysaccharides (LPS) from toxins of gram-negative gut bacteria can also leak into the blood. This affects key organs like the liver, the heart, lungs, the joints, the immune system and the thyroid. When this process has gone on for some time, the blood/brain barrier is breaking down next. The intestinal inflammation causes the release of inflammatory cytokines that circulate in the blood stream. The cytokines cross the blood/brain barrier and activate the support cells in the brain, called microglia. This in turn causes inflammatory degenerative changes in the brain.

Blood/brain barrier

LPS circulating in the blood from gut bacteria endotoxins increase the permeability of the blood/brain barrier. This is bad news for the brain as it becomes vulnerable to attacks from the antibodies mentioned and from food particles. Dr. Silverman cited papers showing that circulating antibodies that cause inflammation in the brain can be the starting point for early Parkinson’s disease. Autoimmune antibodies can cause even depression.

Intestinal permeability can be assessed by various antibody constellations. For instance IgA antibodies point to an ongoing issue/early leaky gut syndrome. IgM antibodies indicate early onset and IgG antibodies chronic issues of leaky gut syndrome. If you add various antigens like LPS, zonulin and actomyosin you can pinpoint which structure of the gut wall is affected by leaky gut syndrome, and the antibody type adds more information about the timing of the onset of leaky gut syndrome.

Bacterial toxins threatening the brain when BBB damaged

As I already mentioned the blood/brain barrier (BBB) is often simultaneously affected when there has been leaky gut syndrome. There may be a delay, but eventually the BBB breaks down also, and the brain will be in jeopardy. Dr. Silverman gave an example of how depression can develop as result of a breakdown of the BBB. Chronic intestinal inflammation can suppress the sensitive hippocampus cells from regenerating. Physicians call that impairment of hippocampal neurogenesis. Inflammatory cytokines damage the neuronal cell progenitors. As a result patients with inflammatory bowel disease can have mood disorders and cognitive impairment. Sophisticated BBB blood tests can pinpoint whether the BBB is intact or establish whether there is impairment. The important thing to remember: there is a gut brain connection.

Fixing the gut to stop bacterial toxins threatening the brain

In order to fix the BBB, you must first concentrate on fixing leaky gut syndrome.

  • Avoid gluten, as gluten is causing inflammation of the gut wall.
  • Start taking probiotics that contain more than 30 Billion lactobacillus plantarum, lactobacillus acidophilus and Bifidobacterium lactis per daily dose.
  • Do a heavy metal detox involving phytonutrients, hops, turmeric, Andrographis, zinc, polyphenols, omega-3 fatty acids, and watercress plant extract. Andrographis, also known as the “King of Bitters”, is an Ayurvedic medicine used to promote digestion and stimulate appetite.

Nutrients to fix the blood/brain barrier

Dr. Silverman uses the following nutrients to repair the blood brain barrier.

  • Acetyl L-Carnitine: this helps to protect the mitochondria from oxidative damage
  • Berberine: reduces inflammation in brain injuries
  • Alpha-lipoic acid: preserves the integrity of the BBB by controlling oxidative stress
  • Curcumin: decreases brain swelling, preserves the BBB and increases tight junction protein in brain cells
  • Vitamin D3 (5000 IU or more): protects the BBB by various mechanisms
  • Omega-3 fatty acids: they increase cell membrane fluidity and protect the BBB
  • Resveratrol: reduces inflammation and restores the BBB

Neuroplasticity

In order for the brain to adapt to changes, it must be flexible, which means on a cellular level that nerve cells form new synapses, neurological pathways etc. This is what neuroplasticity means. Here are the factors that Dr. Silverman listed as facilitating neuroplasticity.

  • Regular exercise
  • DHA from fish oil capsule supplements
  • Turmeric
  • Whole coffee extract
  • Alpha-lipoic acid
  • Lactobacillus brevis and Bifidobacterium longum
  • Bifidobacterium animalis Lactis 420 (B420)
  • Probiotics: they feed the healthy gut bacteria (e.g. apple cider vinegar)
  • Elevate magnesium in the brain through L-threonate
Bacterial Toxins Threatening The Brain

Bacterial Toxins Threatening The Brain

Conclusion

In the last few years it has become abundantly clear that leaky gut syndrome is not an isolated matter. It is invariably connected to a breakdown of the blood/brain barrier (BBB). Leaky gut syndrome alone is bad enough as it can lead to a number of autoimmune diseases, like Hashimoto thyroiditis and others. But when the BBB is affected, antibodies can now affect nerve cells, can cause Parkinson’s disease, depression, and even Alzheimer’s disease. There is no reliable database for what can happen to the brain when the BBB breaks down.

Because of these connections it is important to sanitize the gut, re-establish a healthy gut flora and overcome leaky gut syndrome. This will at the same time repair the broken down BBB. It will also prevent further possible damage to the brain in the future. Your gut health is your brain health. Take care of both your gut as well as your brain!

Incoming search terms:

Sep
02
2017

Resveratrol Effective In Humans

Resveratrol has been labeled a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

A 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage I hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension was defined as a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Each subgroup was divided into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years. The purpose of the trial was to determine the effect of resveratrol, which was added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gamma-glutamyl transferase (Gamma-GT) were normal in the group where resveratrol had been added.

Resveratrol effective in humans: diabetes patients

Resveratrol helps diabetes patients. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. Resveratrol was given to a high group (1000 mg per day), a low group (150 mg) and a placebo (fake pills) were given to the third group. The end point was an elevation of the bone alkaline phosphatase (BAP). This was measured in the beginning of the study and at 4, 8 and 16 weeks. The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can potentially be used as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

The Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is known for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11states enrolled in the study. In 1980 diet sheets were used to determine who was adhering to a Mediterranean diet. 4676 middle-aged participants were identified to qualify for this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. Fish and lean meats were also consumed. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres. The lead author Marta Crous-Bou stated that overall healthy eating was associated with longer telomeres compared to the control group. But the strongest association was found in women who adhered to the Mediterranean diet when compared to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Longer telomeres have been found to be associated with the lowest risk to develop chronic diseases and the highest probability of an increased life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. It has been shown in humans that increased physical activity elongated telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

As this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol can also be used in combination with other cancer treatments, which improves survival figures. As the link above explains, more cancer clinical trials with a variety of cancers and larger patient numbers are required, but many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

In this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has been shown to be anti-inflammatory. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. As this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study has also confirmed that resveratrol from red wine is what is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. 1500 mg of resveratrol or placebo were administered daily for 3 months. Serum total testosterone was decreased by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%. Fasting insulin level was reduced by 31.8%. At the same time insulin sensitivity was increased by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

A double blind, randomized, placebo-controlled study was done on 50 diabetics. The cardio-ankle vascular index (CAVI) was used to determine arterial stiffness. The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics are known to have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. Bowel disease questionnaires were used to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group was given 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. It is known that the hippocampus is the seat for short-term memory, which is lost in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. Because of these combined anticancer properties resveratrol is a chemotherapeutic agent that can be combined with conventional anticancer drugs.

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

Jul
22
2017

Relaxation Reduces Inflammation

Relaxation can calm your mind, but new research has shown that relaxation reduces inflammation as well.

This article is based on a research paper in Frontiers in Immunology in June of 2017.

It concentrated on the calming effect of meditation on the nuclear factor kappa B (NF-κB), which causes inflammation. We know that overstimulation of the sympathetic nervous system activates the inflammatory pathway by expressing the genes responsible for NF-κB. These authors showed that the reverse is true also, namely that inflammation can be suppressed through meditation.

This metaanalysis of 18 research papers included 846 participants.

Here are brief summary findings of these 18 studies. Note that diverse relaxation methods had very similar results on the genes expressing inflammatory markers.

1. Qigong practitioners

A group of Qigong practitioners had 132 downregulated genes and 118 upregulated genes when compared to non-meditating controls. Meditation strengthens the immune system and delays cell death.

2. Sudarshan Kriya yoga

One form of yoga breathing is called Sudarshan Kriya yoga. When this form of breathing yoga was practiced for 1 hour per day the stress-related response on white blood cells was shielded compared to controls that did not meditate this way. Those practicing yoga had a strengthened immune system. Genes inhibiting cell death were also strengthened.

3. Chronic lymphocytic leukemia

Eight patients with chronic lymphocytic leukemia were practicing the “seven yoga breathing patterns”; the popular Indian yoga teacher, Swami Ramdev, developed these. Those patients who practiced the breathing yoga technique had 4,428 genes that were activated compared to controls. They showed an up to twofold upregulation, which strengthened their immune system.

4. Loneliness in older people

Loneliness in older people causes inflammation, morbidity and mortality. 55-85 year old volunteers were taking a course of mindfulness-based stress reduction. The researchers wanted to find out whether it was due to increased inflammation that older people were more susceptible to disease. Blood mononuclear cells were tested for genome-wide transcriptional profiling. Those older persons who had reported loneliness had more transcription factors for nuclear factor kappa B (NF-κB) than controls without feelings of loneliness. After an 8-week course those who no longer felt loneliness had a reversal of proinflammatory gene expression. The genes that had changed expression were located on monocytes and B-lymphocytes; these are cells of the immune system.

5. Care workers for patients with mental health problems

Care workers who looked after patients with mental health problems or chronic physical problems have been known to have stress-induced chronic inflammation markers in their blood. A study involving 23 caregivers used a practice of Kirtan Kriya Meditation (KKM) assisted by an audio recording every day for 8 weeks. There were questionnaires filled in for depression and mental health before and after the 8-week trial. Blood samples for transcriptional profiling were also taken before and after the KKM trial. The KKM meditation group had significantly less depressive symptoms and showed improvements in mental health. 49 genes were downregulated and 19 were upregulated compared to the controls. The pro-inflammatory NF-κB expression was decreased; the anti-viral gene expression was increased. This was measured using the IRF-1 gene. This gene controls the expression of the interferon-regulatory factor 1 (IRF-1 gene), which controls the immune response to viral infections. The interesting observation here was that a time of only 8 weeks of meditation was able to reduce inflammatory substances in the blood and could activate the immune system to fight viruses better. Further tests showed that it was the B cells and the dendritic cells that had been stimulated by the meditation.

6. Younger breast cancer patients

Younger breast cancer patients taking a mindfulness meditation course: Another study involved younger stable breast cancer patients after treatment that also had insomnia. Both breast cancer and insomnia were known to be associated with a lot of inflammatory markers in the blood. A total of 80 patients were enrolled in the study, 40 were treated with Tai-Chi exercises, the other group of 40 with cognitive-behavioral therapy. Tai-Chi exercises reduced IL-6 marginally and TNF (tumor necrosis factor) significantly. There was a 9% reduction with regard to the expression of 19 genes that were pro-inflammatory; there was also a 3.4% increase with regard to 34 genes involved in regulating the antiviral and anti-tumor activity in the Tai-Chi group when compared to the cognitive-behavioral therapy group. While cognitive therapy has its benefits, the winner was the Tai-Chi group where 68 genes were downregulated and 19 genes were upregulated. As in the prior study the pro-inflammatory NF-κB expression was decreased, which reduced the inflammatory response.

7.  Study with fatigued breast cancer patients

Another breast cancer study, this time with fatigued breast cancer patients, was observed. The patients practiced 3 months of Iyengar yoga. After 3 months of yoga there were 282 genes that were upregulated and 153 genes that were downregulated. The expression of NF-κB was significantly lowered. This suggests a lowering of inflammation. At the same time questionnaires showed that the fatigue factors had been significantly reduced 3 months after initiating yoga exercises.

8. Mindful meditation used in younger breast cancer patients

A group of 39 breast cancer patients diagnosed before the age of 50 received six weekly 2-hour sessions of mindful awareness practices (MAP). This program is tailored to cancer survivors. In addition to the group sessions the patients also did daily exercises of between 5 minutes and 20 minutes by themselves. The control group consisted of patients on a wait list. The investigators used several psychological measure (depression and stress) and physical measures (fatigue, hot flashes and pain) to assess their progress. Gene expression in the genome and inflammatory proteins were measured at baseline and after the intervention. Mindful practices showed clear benefits: they reduced stress, and sleep disturbances, hot flashes and fatigue showed improvement. Depression was also marginally reduced. There were 19 proinflammatory genes that had been turned off, but not in the control group that did not do mindful practices. Tests for changed genes revealed that transcription factor NF-κB was significantly downregulated. Conversely the anti-inflammatory glucocorticoid receptor and the interferon regulatory factors were increased. Downregulated genes were shown to come from monocytes and dendritic cells while the upregulated genes came from B lymphocytes.

9. Telomerase gene expression

Lifestyle modification changes telomerase gene expression: 48 patients with high blood pressure were enrolled either in an extensive lifestyle program teaching them about losing weight, eating less sodium, exercising, adopting a healthy diet and drinking less alcohol; the other choice was to use transcendental meditation (TM) combined with health education with weekly sessions for 4 months. It turned out that both programs led to an increased expression of telomerase genes. Both groups did not show telomerase changes, but the authors stated that the observation time was too short for that to occur. The extensive health education program turned out to be better for patients with high blood pressure as it decreased the diastolic blood pressure more and resulted in healthier lifestyles.

10. Older patients with insomnia

Mind-body interventions for older patients with insomnia: A sample of 120 older adults with insomnia was divided into two groups. One group was treated with cognitive-behavioral therapy (CBT), the other group with Tai Chi. The control group consisted of a group of people participating in a sleep seminar. 4 months after the intervention the CBT group had a significantly reduced C-reactive protein (CRP). The proinflammatory markers were reduced in both groups after 2 months and in the Tai Chi group this remained low until 16 months. Gene expression profiling showed that CBT downregulated 347 genes and upregulated 191 genes; the Tai Chi group had downregulated 202 genes and upregulated 52 genes. The downregulated genes were mostly inflammatory genes while the upregulated genes controlled mostly interferon and antibody responses.

11. Patients with bowel disease

19 patients with irritable bowel syndrome (IBS) and 29 patients with inflammatory bowel disease (IBD) were treated with a relaxation response-based mind-body intervention. This consisted of 9 weekly meetings, each lasting 1.5 hours and practices a home for 15-20 minutes. The participants were taught breathing exercises and cognitive skills designed to help manage stress. At the end of the mind-body intervention and at a follow-up visit 3 weeks later participants of both the IBS and IBD groups scored higher in quality of life and lower in the level of anxiety they had before. They had reduced symptoms of their conditions. The IBS group showed an improvement in 1059 genes. These were mostly improvements in inflammatory responses, in cell growth, regarding proliferation, and also improvements in oxidative stress-related pathways. The IBD group showed improvements in 119 genes that were related to cell cycle regulation and DNA damages. Other genetic tests showed that NF-κB was a key molecule for both IBS and IBD. The main finding was that relaxation response-based mind-body intervention was able to down regulate inflammation in both IBD and IBS.

12. Caregivers for Alzheimer’s patients receiving a course of MBSR

A course of mindfulness based stress reduction (MBSR) was given to a group of 25 caregivers. Using 194 differently expressed genes the investigators could predict who would be a poor, moderate or good responder to the MBSR intervention. These genes related to inflammation, depression and stress response. 91 genes could identify with an accuracy of 94.7% at baseline whether the person would receive psychological benefits from the MBSR program.

13. Higher state of consciousness in two experienced Buddha meditators

Genetic test showed, similar to the other cases described here that genes involved in the immune system, cell death and the stress response were stimulated. EEG studies in both individuals during deep meditation were almost identical with an increase of theta and alpha frequency ranges.

14. Rapid gene expression in immune cells (lymphocytes) in the blood

One study used gentle yoga postures, meditation and breathing exercises. 10 participants who were recruited at a yoga camp had yoga experience between 1.5 months and 5 years. Their response resulted in 3-fold more gene changes than that of controls. Otherwise the findings were very similar to the other studies.

15. Genomic changes with the relaxation response

The relaxation response (RR) is the opposite of the stress response.  One study examined how various modes of entering into the relaxation response like yoga, Qi Gong, Tai Chi, breathing exercises, progressive muscle relaxation, meditation, and repetitive prayer would lead to beneficial gene effects. As in other studies inflammation was reduced and the immune system was stimulated from the relaxation response. This was verified with detailed gene studies. The authors noted that different genes were activated in people who had done long-term RR practice versus people who practiced RR only for a shorter time. There were distinctly different gene expressions.

16.  Energy metabolism and inflammation control

Relaxation responses beneficial for energy metabolism and inflammation control: Experts with experience in RR were compared with a group of novice RR practitioners. Experts and short-term practitioners expressed their genes differently at baseline. But after relaxation both experts and novices had gene changes in the area of energy metabolism, electron transport within the mitochondria, insulin secretion and cell aging. The upregulated genes are responsible for ATP synthase and insulin production. ATP synthase is responsible for energy production in the mitochondria and down regulates NF-κB pathway genes. Inflammation was reduced by these changes. All these beneficial gene changes were more prominent in expert RR practitioners. Other beneficial changes noted were telomere maintenance and nitric oxide production in both expert and novice RR practitioners.

17. Relaxation changes stress recovery and silences two inflammatory genes

Mindfulness meditation changes stress recovery and silences two inflammatory genes: Experienced meditators were tested after an intensive 8-h mindfulness meditation retreat workshop. Two inflammatory genes were silenced by mindfulness meditation compared to controls. Other genes that are involved in gene regulation were found to be downregulated as well. These experienced meditators had a faster cortisol recovery to social stress compared to controls.

18. Vacation and meditation effect on healing from disease

This last study investigated the effect of a 6-day holiday retreat. One group was offered a 4-day meditation course, one group was the control group just holidaying and the third group was an experienced meditation group who also took the retreat meditation course. Depression, stress, vitality, and mindfulness were measured with questionnaires. All groups were positively changed after the holiday and remained this way at 1 month after the retreat. 10 months after the retreat novice meditators were less depressed than the vacation control group. At the center of the experiment was the gene expression study. 390 genes had changed in all of the groups. The authors assumed that this was due to the relaxation experience of the retreat. The genes involved related to the stress response, wound healing, and injury. Other genes measured inflammation (control of tumor necrosis factor alpha). Another set of genes measured the control of protein synthesis of amyloid beta (Aβ) metabolism, which causes Alzheimer’s disease and dementia. All groups had markers that indicated less risk of dementia, depression and mortality, which was likely due to the relaxation from the retreat.

Relaxation Reduces Inflammation

Relaxation Reduces Inflammation

Conclusion

This study is a meta-analysis of 18 research papers. The authors found that very different approaches to relax the mind have fairly consistent universal effects on reducing inflammation. Most of this work was done with genetic markers. No matter what type of relaxation method you use, you will have beneficial effects from it. But the beneficial effect is not only strengthening the immune system, it also improves sleep, depression, anxiety and blood pressure. In addition it is improving your stress response, wound healing, risk of dementia and it reduces mortality. We don’t quite understand all of the details yet.

What is definitely documented is the effect of the mind-body interaction. It also points clearly to the relaxation response from meditation and similar relaxation methods. This has been proven beyond any doubt through genetic tests.

Incoming search terms:

Jul
01
2017

Advanced Glycation End Products (AGEs)

Advanced glycation end products (AGEs) form when food is cooked at high temperatures. Sugar molecules react with proteins crosslinking them and changing how they function. It prevents proteins from doing their job. Glycation also causes inflammation, which damages mitochondria, the power packages inside cells that provide the body with energy. Overall AGEs lead to premature aging, which comes from the toxic protein reactions. Advanced glycation end products accumulate as glycated proteins in the tissues of the body. This leads to mitochondrial dysfunction.

Effect of advanced glycation end products (AGEs) on the body

The following tissues are frequently affected by the toxic effect of AGEs.

  • The accumulation of AGEs can cause kidney disease and kidney failure (renal failure). In this case the kidneys no longer filter the blood to excrete waste. Hemodialysis may be required.
  • Joint cartilage is damaged by AGEs so it can no longer handle stress and joint stiffness sets in. AGEs are now recognized as a major cause of osteoarthritis.
  • Cross-linked proteins from AGEs can cause Alzheimer’s and Parkinson’s disease. Damaged proteins accumulate in brain cells that disable and kill them eventually.
  • Glycation of LDL particles has been well documented as an important cause of increasing the plaque formation in arteries by LDL. Glycated LDL is much more susceptible to oxidation than regular LDL. Oxidized LDL causes damage to the lining of the arteries and destroys endothelial nitric oxide synthase. This is a critical enzyme, which is involved in maintaining vasodilatation and blood flow. Once LDL has become glycated, it is deformed and LDL receptors can no longer recognize it. This means that glycated LDL continues to circulate in the bloodstream where it contributes to the atherosclerotic process. It forms a plaque which becomes a reason for heart attacks and strokes. Glycation of LDL is particularly common in patients with diabetes.
  • Glycation of the skin sensitizes the skin to UV light damage. It triggers oxidative stress that increases the risk of skin cancer.
  • Glycation damages our eyes. It causes clouding of the lens (cataracts) and it damages the retina. Macular degeneration can ultimately cause blindness.
  • When glycation affects the discs in the spinal cord, this can cause disc protrusions and disc herniations. Often the spinal nerves that are nearby get injured causing limping and leg or arm weakness.

Nutrients to counter AGEs

There are nutrients that can slow down the rate of glycation and as a result will halt the aging process.

Benfotiamine

Benfotiamine is a fat-soluble form of the water-soluble vitamin B1 (thiamine). It has been shown to reverse glycation in cell cultures and in humans.

As a result the damage to the cells that are lining arteries is reduced. Benfotiamine also counters diabetic neuropathy, retinopathy and nephropathy.

Pyridoxal 5’-phosphate

Pyridoxal 5’-phosphate is a metabolite of vitamin B6. It is similar to benfotiamine in that it counters glycation and dissolves deposited AGEs. It is particularly useful to stop fat and protein glycation. In diabetic patients lipid glycation is often a problem as these authors have shown. Pyridoxal 5’-phosphate traps glucose breakdown products before they become part of glycation reactions.

Carnosine

Carnosine is a dipeptide, made up of the amino acids histidine and beta-alanine. It is found in higher concentration in muscle and brain tissue. It scavenges for free radicals and prevents AGE formation. It is preventing both lipid glycation and protein glycation. This publication states that carnosine can play a role in preventing Alzheimer’s disease. As protein crosslinking is prevented with carnosine, tangled protein clumps cannot accumulate and cause Alzheimer’s disease.

Carnosine also reduces blood lipid levels and stabilizes atherosclerotic plaques. This reduces the risk of plaque rupture, which can cause a heart attack or stroke.

Carnosine also has a mitochondria stabilizing function resisting the destructive effects of oxidative stresses.

Luteolin

Luteolin is a bioflavonoid, which can be found in many plants. It has anti-inflammatory effects and works by suppressing the master inflammatory complex, called NF-kB.  NF-kB triggers the production of multiple cytokines and is associated with many cancers, chronic diseases, autoimmune diseases and septic shock. Kotanidou et al. did an experiment where they injected mice with Salmonella enteritis toxin, either with or without luteolin protection. Without luteolin only 4.1% of the mice survived on day 7. With luteolin protection 48% were alive on day 7.

Luteolin has been shown to be effective as an anti-inflammatory in the brain, the blood vessel lining, intestines, skin, lungs, bone and gums.

All these four supplements are available in the health food store. They work together and would be recommendable in diabetic patients where glycation is most prominent. But these supplements are also useful for older people who want to slow down the aging process in general.

Nutrients to slow down mitochondrial aging

Glycation is linked to mitochondrial deterioration and dysfunction. It accelerates aging in every aspect. AGEs (advanced glycation end products) crosslink proteins, lipids, but also damage enzymes and DNA. Mitochondrial energy production is slowed down by glycation. The end result is a lack of energy and slower repair processes, which all depend on mitochondrial energy production. The following supplements have shown some merit in reversing this process.

Pyrroloquinoline quinone (PQQ)

PPQ is a supplement that is known to produce new mitochondria in cells. This helps the energy metabolism of aging cells to recover.

Taurine

Taurine is an amino acid that is found abundantly in heart and skeletal muscles cells, brain cells and cells of the retina. These are areas in the body with high metabolic rates that can burn out mitochondria. Taurine regulates enzymes in mitochondria that harvest energy from food substances. In patients who experience accelerated aging, a lack of taurine can produce an energy crisis. But supplementation with taurine can rescue the cells by reducing oxidative stress and restoring the function of mitochondria in cells that are aging. Brain cells were putting out new shoots, called neurites when taurine was given as a supplement. This helps to improve brain connection, and preserves memory and cognition.

R-lipoic acid

R-lipoic acid helps with mitochondrial function by being involved with extracting energy from foods. When R-lipoic acid is given to aging animals, their metabolic function improves, the mitochondria become healthier and there are less oxidative stress-inducing byproducts. It protects their liver, heart and brain cells from oxidative stress in their mitochondria. It is becoming known as an energy-giving supplement.

Advanced Glycation End Products (AGEs)

Advanced Glycation End Products (AGEs)

Conclusion

Sugar overconsumption and overcooking food can cause advanced glycation end products (AGEs) where lipids and proteins get cross-linked. This leads to premature loss of organ function. The mitochondria are also slowed down. This creates prematurely aging. Fortunately there are a few supplements like benfotiamine, pyridoxal 5’-phosphate, carnosine and luteolin. They protect against glycation. Mitochondria can also be protected by PPQ, taurine and R-lipoic acid. Although we cannot stop the aging process, avoiding sugar and stopping to consume overcooked food, such as barbecued meats and deep fried food is a sensible step in prevention.

With this approach and some supplements a lot can be done to slow down aging.

Incoming search terms:

Feb
25
2017

Heart Health Improves With Hormone Replacement

Dr. Pamela Smith gave a lecture in December 2016 showing that heart health improves with hormone replacement. Her talk was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9 to Dec. 11, 2016) in Las Vegas, which I attended. The title of the talk was: “Heart health: The Importance of Hormonal Balance for Men and Women”. Her keynote lecture contained 255 slides. I am only presenting a factual summary of the pertinent points here.

1. Estrogen

Observations regarding risk of heart attacks

  1. Women have a lower risk of heart attacks before menopause compared to men of the same age.
  2. Heart attack rates go up significantly after menopause.
  3. Estrogen replacement therapy may reduce the risk of heart attacks by 50% for postmenopausal women.

Lipid profile after menopause

There is an elevation of LDL cholesterol, total cholesterol and triglycerides as well as lower HDL cholesterol levels. All of this causes a higher risk of heart attacks for postmenopausal women. Estrogen replacement therapy increases the large VLDL particles, decreases LDL levels and raises HDL-2. These changes are thought to be responsible for helping reduce heart attack rates in postmenopausal women who do estrogen replacement therapy (ERT).

Difference between oral and transdermal estrogen replacement

When estrogen is taken by mouth, it is metabolically changed in the liver. This reduces the protective effect on the cardiovascular system. In contrast, transdermal estrogen (from commercial estrogen patches or from bioidentical estrogen creams) has a higher cardioprotective effect. The liver does not metabolize transdermal estrogen. Dr. Smith explained in great detail using many slides how estrogen prevents heart attacks. Details about this would be too technical for this review. Apart from lipid lowering effects there are protective effects to the lining of the arteries. In addition there are metabolic processes in heart cells and mitochondria that benefit from estrogens. The end result is that postmenopausal women who replace estrogen will outlive men by about 10 years. Stay away from Premarin, which is not human estrogen, but is derived from pregnant mares. Also the tablet form is metabolized by the liver, which loses a lot of the beneficial effects that you get from transdermal estrogen. 

How can you document the beneficial effects of estrogen replacement?

  1. Carotid intima measurements in postmenopausal women on ERT show a consistent reduction in thickness compared to controls.
  2. The physical and emotional stress response is reduced compared to postmenopausal women without ERT.
  3. Hormone replacement therapy in postmenopausal women reduces blood pressure. Measurements showed this effect to be due to a reduction of angiotensin converting enzyme (ACE) by 20%. This is the equivalent of treating a woman with an ACE inhibitor without the side effects of these pills.
  4. Coronary calcification scores were lower in postmenopausal women on ERT than a control group without ERT. These calcification scores correlate with the risk for heart attacks.
  5. Oral estrogen replacement leads to proinflammatory metabolites from the liver metabolism of estrogen. This is not found in the blood of women using transdermal estrogen. The anti-inflammatory effect of transdermal estrogen is another mechanism that prevents heart attacks.
  6. Postmenopausal women on ERT had no increased risk of heart attacks or venous thromboembolism (clots in veins). Menopausal women without ERT have a risk of 40% of dying from a heart attack. Their risk of developing breast cancer is 5.5%, the risk of dying from breast cancer is about 1%. Oral estrogen use was associated with venous thromboembolism.
  7. Estrogen has antiarrhythmic effects stabilizing the heart rhythm. Dr. Smith said that in the future intravenous estrogen might be used to prevent serious arrhythmias following heart attacks.

Estrogen levels in males

Males require a small amount of estrogens to maintain their memory, for bone maturation and regulation of bone resorption. But they also need small amounts of estrogen for their normal lipid metabolism.

However, if the estrogen levels are too high as is the case in an obese, elderly man, there is an increased risk of heart disease. Factors that lead to increased estrogen levels in an older man are: increased aromatase activity in fatty tissue, overuse of alcohol and a change in liver metabolism, zinc deficiency, ingestion of estrogen-containing foods and environmental estrogens (also called xenoestrogens).

2. Progesterone

Progesterone is significantly different from the progestin medroxyprogesterone (MPA). MPA was the oral progestin that was responsible for heart attacks and blood clots in the Women’s Health Initiative. MPA increases smooth muscle cell proliferation. This in turn causes hardening of the coronary arteries. In contrast, progesterone inhibits smooth muscle cell proliferation, which prevents heart attacks. Progesterone also lowers blood pressure and elevates HDL cholesterol, but MPA does not.

Progesterone in males

In a small study Depo-Provera was given to males for 17 days. Blood tests showed a lowering of triglycerides, LDL cholesterol and Apo A-1.

3. Testosterone

Testosterone replacement in women

Testosterone in women does not only increase their sex drive, but also relaxes the coronary arteries in women who were testosterone deficient. This allows more blood flow to the heart. In postmenopausal women testosterone replacement lowered lipoprotein (a) levels up to 65%. The physician will only replace testosterone in women who have either enough of their own estrogen production or else have been replaced first with bioidentical estrogen. Otherwise testosterone alone can cause heart attacks in women.

Elevated testosterone in women with PCOS

Women with polycystic ovary syndrome (PCOS) can have increased testosterone levels when they go through premenopause or menopause.

Women with PCOS are at a higher risk to develop diabetes, heart disease and high blood pressure. 50% of women with PCOS have insulin resistance. 70% of women with PCOS in the US have lipid abnormalities in their blood.

Elevated testosterone levels in the blood can lower the protective HDL cholesterol and increase homocysteine levels. Both can cause heart attacks.

Women with PCOS have a 4-fold risk of developing high blood pressure.

Testosterone replacement in males

A 2010 study showed that low testosterone levels in males were predictive of higher mortality due to heart attacks and cancer. Low testosterone is also associated with high blood pressure, heart failure and increased risk of cardiovascular deaths. There was a higher incidence of deaths from heart attacks when testosterone levels were low compared to men with normal testosterone levels.

Low testosterone is also associated with the development of diabetes and metabolic syndrome, which can cause heart attacks.

It is important that men with low testosterone get testosterone replacement therapy.

DHT (Dihydrotestosterone)

DHT is much more potent than testosterone. Conversion of testosterone leads to DHT via the enzyme 5-alpha-reductase. While testosterone can be aromatized into estrogen, DHT cannot. Some men have elevated levels of DHT. This leads to a risk of heart attacks, prostate enlargement and hair loss of the scalp.

Andropause treatment

Only about 5% of men in andropause with low testosterone levels receive testosterone replacement in the US. Part of this is explained by rumors that testosterone may cause prostate cancer or liver cancer. The patient or the physician may be reluctant to treat with testosterone. Bioidentical testosterone has been shown to not cause any harm. It is safe to use testosterone cream transdermally. It does not cause prostate cancer or benign prostatic hypertrophy.

An increase of 6-nmol/L-serum testosterone was associated with a 19% drop in all-cause mortality.

Testosterone helps build up new blood vessels after a heart attack. Testosterone replacement increases coronary blood flow in patients with coronary artery disease. Another effect of testosterone is the decrease of inflammation. Inflammation is an important component of cardiovascular disease.

Testosterone replacement improves exercise capacity, insulin resistance and muscle performance (including the heart muscle).

Apart from the beneficial effect of testosterone on the heart it is also beneficial for the brain. Testosterone treatment prevents Alzheimer’s disease in older men by preventing beta amyloid precursor protein production.

4. DHEA

Dehydroepiandrosterone (DHEA) is a hormone produced in the adrenal glands. It is a precursor for male and female sex hormones, but has actions on its own. It supports muscle strength. Postmenopausal women had a higher mortality from heart disease when their DHEA blood levels were low.

Similar studies in men showed the same results. Congestive heart failure patients of both sexes had more severe disease the lower the DHEA levels were. Other studies have used DHEA supplementation in heart patients, congestive heart failure patients and patients with diabetes to show that clinical symptoms improved.

5. Melatonin

Low levels of melatonin have been demonstrated in patients with heart disease. Melatonin inhibits platelet aggregation and suppresses nighttime sympathetic activity (epinephrine and norepinephrine). Sympathetic activity damages the lining of coronary arteries. Melatonin reduces hypoxia in patients with ischemic stroke or ischemic heart disease. Lower nocturnal melatonin levels are associated with higher adverse effects following a heart attack. Among these are recurrent heart attacks, congestive heart failure or death. Melatonin widens blood vessels, is a free radical scavenger and inhibits oxidation of LDL cholesterol. Melatonin reduces inflammation following a heart attack. This can be measured using the C-reactive protein.

In patients who had angioplasties done for blocked coronary arteries intravenous melatonin decreased CRP, reduced tissue damage, decreased various irregular heart beat patterns and allowed damaged heart tissue to recover.

6. Thyroid hormones

It has been known for more than 100 years that dysfunction of the thyroid leads to heart disease. Hypothyroidism can cause heart attacks, hardening of the coronary arteries and congestive heart failure. Lesser-known connections to hypothyroidism are congestive heart failure, depression, fibromyalgia, ankylosing spondylitis and insulin resistance. Some cases of attention deficit hyperactivity disorder (ADHD) with low thyroid levels may successfully respond to thyroid replacement.

Thyroid hormones improve lipids in the blood, improve arterial stiffness and improve cardiac remodeling following a heart attack. Thyroid hormones help with the repair of the injured heart muscle. They also work directly on the heart muscle helping it to contract more efficiently. Lower thyroid stimulating hormone (TSH) values and higher T3 and T4 thyroid hormone levels lead to improved insulin sensitivity, higher HDL values (= protective cholesterol) and overall better functioning of the lining of the arteries.

Dr. Smith said that thyroid replacement should achieve that

  • TSH is below 2.0, but above the lower limit of normal
  • Free T3 should be dead center of normal or slightly above
  • Free T4 should be dead center of normal or slightly above

Most patients with hypothyroidism require replacement of both T3 and T4 (like with the use of Armour thyroid pills).

7. Cortisol

Cortisol is the only human hormone that increases with age. All other hormones drop off to lower values with age. The adrenal glands manufacture cortisol. With stress cortisol is rising, but when stress is over, it is supposed to come down to normal levels. Many people today are constantly overstressed, so their adrenal glands are often chronically over stimulated. This can lead to a lack of progesterone. It also causes a lack of functional thyroid hormones as they get bound and are less active. When women have decreased estradiol in menopause there is a decline in norepinephrine production, production of serotonin, dopamine and acetylcholine. Women with this experience depression, lack of drive and slower thought processes.

Heart Health Improves With Hormone Replacement

Heart Health Improves With Hormone Replacement

Conclusion

Seven major hormones have been reviewed here that all have a bearing on the risk of developing a heart attack. It is important that these hormones are balanced, so they can work with each other. Hormones can be compared to a team that works together and is responsible for our health. If one or several of the team players are ineffective, our health will suffer. For this reason hormone replacement is crucial. Hormones have effects on mitochondria of the heart muscles cells. They stabilize the heart rhythm as in the case of estradiol. But they can also strengthen the heart muscle directly through DHEA and estrogens in women and DHEA and testosterone in men. Thyroid hormones are another supportive force for the heart and can even be used therapeutically in chronic heart failure patients. When people age, many hormones are produced less, but blood tests will show this. Replacing hormones that are missing can add years of active life.

Taking care of the symphony of hormones means you are taking care of your most important organ, the heart!

Incoming search terms:

Jan
28
2017

Cardiovascular Disease And Inflammation

Dr. Mark Houston talked about cardiovascular disease and inflammation – “the evil twins”. He presented this lecture at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Dr. Houston is an associate clinical professor of medicine at the Vanderbilt University Medical School in Nashville, TN 37232.

New thinking about cardiovascular disease and inflammation

Dr. Houston pointed out that the old thinking about cardiovascular disease has to be replaced with the new thinking. Here are a number of points regarding the new thinking.

  1. Coronary heart disease and congestive heart failure are diseases of inflammation. They are also coupled with oxidative stress, vascular immune dysfunction and dysfunction of the mitochondria.
  2. In the past it was difficult to reduce these cardiovascular diseases. With the new thinking there are now new treatment approaches that help cure cardiovascular disease.
  3. The development of heart disease has a long history. Endothelial dysfunction predates coronary artery disease by many years. This is followed by vascular smooth muscle dysfunction. Inflammation develops and structural changes occur in the small and larger blood vessels with atheromatous deposits (plaques) and final occlusion, at which point you get a heart attack.

Canadian physician Sir William Osler has already stated more than 100 years ago “A man is as old as his blood vessels”.

The old thesis was that cholesterol would lead to deposits that close coronary blood vessels and cause heart attacks. Dr. Houston called this the “cholesterol-centric “ approach. The truth is that with conventional blood tests you are missing 50% of all the high-risk patients that are going to develop heart attacks. They are missing the ones that have chronic inflammation, but normal cholesterol levels.

What was not known in the past was that oxidative stress associated with normal aging can lead to chronic low-grade inflammation. This oxidative stress leads to mitochondrial DNA changes. Associated with it are biochemical changes that cause chronic inflammation, which in turn will affect the lining of the arteries. There is a metabolic change described in the literature as metabolic syndrome, which leads to high blood pressure, hardening of the arteries and eventually heart attacks and strokes. The key today is to include in screening tests all parameters that will predict who is at risk to develop a heart attack or not.

Blood tests to screen for cardiovascular disease and inflammation

Blood tests and health history should be checked for dyslipidemia, high blood pressure (hypertension), hyperglycemia, smoking, diabetes, homocysteinemia, obesity etc. Also, patients with high GGTP (gamma-glutamyl transferase) levels in the blood are more at risk to develop diabetes. This in turn leads to inflammation of the arterial wall and heart attacks. There are 25 top risk factors that are associated with all causes for heart attacks.

Briefly, apart from the 7 factors already mentioned above the physician wants to check for high uric acid levels (hyperuricemia), kidney disease, high clotting factors (fibrinogen levels), elevated iron levels, trans fatty acid levels, omega-3 fatty acid levels and omega-6 to omega-3 ratio, low dietary potassium and magnesium intake with high sodium intake, increased high sensitivity C reactive protein level (hs CRP measuring inflammation). The list to test for cardiovascular disease risk continues with blood tests for vascular immune dysfunction and increased oxidative stress, lack of sleep, lack of exercise, subclinical low thyroid levels, hormonal imbalances for both genders, chronic infections, low vitamin D and K levels, high heavy metals and environmental pollutants.

The speaker stated that he includes a hormone profile and vitamin D levels. He does biochemical tests to check for mitochondrial defects. Micronutrients are also checked as cardiovascular patients often have many nutritional deficiencies. Inflammation is monitored through testing the levels of C-reactive protein (CRP).

In order to assess the risk of a patient Dr. Cohen, a cardiologist has developed the Rasmussen score, which is more accurate than the Framingham score.

The following tests are performed on the patient: computerized arterial pulse waveform analysis (medical imaging), blood pressure at rest and following exercise and left ventricular wall of the heart by echocardiography. Further tests include urine test for microalbuminuria, B-type natriuretic peptide (BNP, a measure of congestive heart failure), retinal score based on fundoscopy, intima-media thickness (IMT, measured by ultrasound on the carotid artery) and electrocardiogram recording (EKG).

Here is what the Rasmussen score means:

  • Disease score 0 to 2: likely no heart attack in the next 6 years
  • Disease score 3 to 5: 5% likely cardiovascular events in the next 6 years
  • Disease score > 6: 15% likely cardiovascular events in the next 6 years

Non-intervention tests to measure cardiovascular health

1. The ENDOPAT test

With this test the brachial artery is occluded with a blood pressure cuff for 5 minutes. Endothelial dysfunction is measured as increased signal amplitude. A pre- and post occlusion index is calculated based on flow-mediated dilatation. The values are interpreted as follows: an index of 1.67 has a sensitivity of 82% and specificity of 77% to predict coronary endothelial dysfunction correctly. It also correlates to a future risk for coronary heart disease, congestive heart disease and high blood pressure.

2. The VC Profile

This test measures the elasticity of the arteries. There is a C1 index that measures the elasticity of the medium and smaller vessels and the C1 index, which measures elasticity of the larger arteries and the aorta. The smaller the numbers are, the less elastic the arterial walls.

3.The Corus CAD score

This is a genetically based blood test. The score can be between 0 and 40. If the score is 40, there is a risk of 68% that there is a major blockage in one or more coronary arteries.

4. Coronary artery calcification

The CAC score correlates very well with major event like a heart attack. There is a risk of between 6- and 35-fold depending how high the CAC score is. The key is not to wait until you have calcification in your coronary arteries, but work on prevention.

Treatment of cardiovascular disease and inflammation

When heart disease is treated the doctor needs to address all of the underlying problems. It starts with good nutrition like a DASH diet or the Mediterranean diet.

Next anti-inflammatory and other supplements are added: curcumin 500 mg to 1000 mg twice a day, pomegranate juice ¼ cup twice per day, chelated magnesium 500 mg twice per day, aged garlic 1200 mg once daily, taurine 3 grams twice per day, CoQ-10 300 mg twice per day and D-ribose 5 grams three times per day. This type of supplementation helps for chest pain associated with angina. On top of this metabolic cardiology program the regular cardiac medicines are also used.

Additional supplements used in the metabolic cardiology program may be resveratrol 500 mg twice per day, quercetin 500 mg twice per day, omega-3 fatty acid 5 grams per day, vitamin K2 (MK 7) 100-500 micrograms per day and MK4 1000 micrograms per day. In addition he gives 1000 mg of vitamin C twice per day. This program helps in plaque stabilization and reversal and reduction of coronary artery calcification.

Case study showing the effect of metabolic cardiology program

Here is a case study of a heart patient that was treated by Dr. Houston. He was a white male, first treated for congestive heart failure as a result of a heart attack in June 2005. Initially his ejection fraction was 15-20%. His medications were: digoxin 0.25 mg once daily, metoprolol 50 mg twice per day, ramipril 10 mg twice per day, spironolactone 25 mg twice per day and torsemide 20 mg once daily. These medications were kept in place, but the metabolic cardiology program was applied in addition. Here are the results of his ejection fraction (EF) values after he was started on the metabolic program:

  • Initial measurement: EF15-20%. Marked shortness of breath on exertion.
  • 3 months: EF 20-25%. He reported improved symptoms.
  • 6 months: EF 25-30%. He said that he had now minimal symptoms.
  • 12 months: EF 40%. He had no more symptoms.
  • 24 months: EF 50%. He reported: “I feel normal and great”.
  • 5 years: EF 55%. He said” I feel the best in years”.

A normal value for an ejection fraction is 55% to 70%.

Cardiovascular Disease And Inflammation

Cardiovascular Disease And Inflammation

Conclusion

Testing for heart disease risk has become a lot more sophisticated than in the past, and the tests have opened up a window to early intervention. Metabolic cardiology is a new faculty of cardiology that assists in the reversal and stabilization of heart disease. It will help high blood pressure patients and stabilizes diabetes, which would otherwise have deleterious effects on heart disease. Metabolic cardiology improves angina patients. It also prevents restenosis of stented coronary arteries. As shown in one clinical example reduced ejection fractions with congestive heart failure will improve. This was achieved solely through the metabolic cardiology program.

As usual, prevention is more powerful than conventional treatment later. To give your cardiac health a good start, don’t forget to cut out sugar, exercise regularly and follow a sensible diet.

Jun
04
2016

Genetic Screening For Better Health

Dr. Matt Pratt-Hyatt gave an overview about genetic screening for better health at the 23rd Annual World Congress on Anti-Aging Medicine on Dec. 13, 2015 in Las Vegas. The talk was entitled ”Genetic Screening: A Tool for Better Health with Age”. He showed that with more sensitive genetic screening techniques minor genetic changes can be detected. These are a lot more common than previously thought of. Matt Pratt-Hyatt, PhD is Associate Laboratory Director for the Great Plains Laboratory in Lenexa, KS.

Specifically, Dr. Pratt-Hyatt explained that single nucleotide polymorphisms, frequently called SNPs (pronounced “snips”) were the most common type of genetic variations among people. These genetic changes in the DNA often cause disease. Different types of genetic testing can identify the gene defects of SNPs. One of the questions is how aging can be better managed when genetic defects are known.

When it comes to our genetic material there are over 3 billion base pairs, all contained in 23 chromosomes. These are home to 20,000-25,000 genes, most of which are normal.

A gene has three regions all of which can have mutations. In the middle there is the coding region; one end is the regulatory region for transcription initiating; at the other end the transcription termination signals are located. Minor mutations in any of these regions can have major implications for the health of the individual or they can stay silent SNPs. SNPs are classified into missense mutation or nonsense mutation. This description just shows how intricate and complex the process of mutations can be!

Three types of sequencing are commonly used:

Three types of genetic screening for better health

  1. Sanger sequencing
 utilizes certain dyes that correspond to specific nucleotides of the DNA. The benefits of Sanger sequencing is that it can cover one gene completely. It can find previously unknown mutations. But the disadvantage of Sanger sequencing is that you cannot process a large number of genes.
  2. The Florophore-base detection looks at multiple SNPs in a single run. This method is cheaper than whole genome sequencing. But one of the disadvantages of Florophore-base detection
is that only a limited number of SNPs can be processed per run. It also can miss new mutations.
  3. Benefits of next generation sequencing 
are that it can look at 1000s of SNPs per run. It is much more accurate than previous technologies. A drawback
though is that the equipment is much more expensive.

Not all of these tests have to be done, but the physician can make the choice of the appropriate one for the patient. The following are some applications with regard to how genetic screening can be useful for better health.

Detoxification as part of genetic screening for better health

Since the 1970’s and 1980’s it has become clear that there are many steps in the detoxification process in the liver. It involves major enzyme systems that are controlled by the P450 genes. Several genetic defects are known that run in different families. These effects are very important for drug detoxification and metabolism. Any mutation in one of the P450 controlling genes will lead to accumulation of the drug that is normally detoxified by this enzyme system. As any drug has toxicity at higher levels, the consequence is possible toxicity, if the drug is not discontinued or lowered. When people age, they often have spontaneous mutations of the P450 detoxification system and this should be taken into account by doctors who prescribe medications. Common drugs that cause problems with the P450 controlled detoxification are antidepressants, the blood thinner Coumadin, the antibiotic erythromycin, the asthma medication Theophylline and many others.

Here is an example of how important this knowledge is in an elderly patient who was sent to the hospital with an irregular heartbeat. The electrocardiogram allowed a diagnosis of atrial fibrillation. The doctor treated the patient with a cautious loading dose of 0.5 mg of Coumadin in an attempt to thin the blood of the patient. This would prevent a blood clot or a stroke due to the arrhythmia. Normally a small dose like this would not do much in terms of blood thinning, as it would take several days of a low dose like this to achieve blood thinning. Unbeknown to the physician, this patient was different as he had a defect in the Cyp2c9 gene, a subtype of the P450 system. Very quickly the patient developed bleeding gums and bruising of the skin in various locations. When blood tests were taken, the INR, a measure of the clotting system, was 3.7, a value that should not have exceeded a level of 2 to 3. Genetic testing confirmed a homogenous mutation of the Cyp2c9 gene that explained the toxicity of Coumadin in this case, one of the many drugs that is detoxified by the P450 system.

Mental health as part of genetic screening for better health

Many mental illnesses can be caused by defects in various parts of the brain metabolism. This is particularly so when it involves the synthesis of brain hormones. If there are genetic defects, this can lead to the particular brain metabolism that is associated with depression or schizophrenia. Even dementia, Alzheimer’s disease and Parkinson’s disease can be caused by genetic defects. Methylation pathway defects are another source of possible genetic defects, which can affect multiple metabolic pathways. This is the cause of many diverse conditions like autism, diabetes and some hereditary cancers. The reason it is important to be aware of such genetic aberrations is that often vitamin B2, B6, niacin, vitamin B12 and the minerals magnesium and zinc can stabilize a person with methylation defects.

Cholesterol as part of genetic screening for better health

People with obesity have problems with their lipid metabolism, diabetes, high blood pressure and often heart disease and strokes. Changes in cholesterol metabolism are at the center of these problems. Cholesterol is one of the building blocks of cell membranes, and cholesterol is one of the normal components in the blood as long as the subfractions are properly balanced (LDL and the HDL cholesterol). Unfortunately many people have minor or major defects of the biosynthetic pathway of cholesterol. There are 5 genes involved in the acetyl CoA biosynthesis. 21 genes are involved in the main cholesterol biosynthesis pathways. Over 10 genes control cholesterol metabolites. Historically these genes were detected because of various familiar gene defects that caused problems with the biochemical processes surrounding cholesterol. Familial high cholesterol levels (familial hypercholesterolemia) is one of these common conditions.

Patients who have this condition will often have high cholesterol and also often have a family history of gall bladder surgery for gallstones and a history of premature heart attacks or strokes. Early diagnosis and careful clinical intervention can improve the outlook for many patients.

Genetic Screening For Better Health

Genetic Screening For Better Health

Conclusion

Not all genetic conditions can be helped by modern medicine. But many minor genetic abnormalities can be worked around or drug interactions can be avoided provided the genetic defect is known. It is encouraging that newer test methods have now shown success, as they are more affordable than in the past. As time progresses the price of these genetic tests will come down even further. Mental health, detoxification pathways and the metabolic syndrome of obesity are practical applications where genetic tests have significance.

Mar
19
2016

Book Review: “Healing Gone Wrong – Healing Done Right”, By Ray Schilling, MD

This book entitled “Healing Gone Wrong – Healing Done Right” (Amazon, March 18, 2016) is dealing with the practice of medicine then and now. Medical errors, false diagnoses and wrong treatments are nothing new in the history of medicine. It happened in the past, and it is happening now. My first book dealt with anti-aging and was entitled “A Survivor’s Guide to Successful Aging” (Amazon 2014).

Book overview

Chapter 1 describes that famous people like President Kennedy, Elvis Presley, Churchill, Beethoven or more recently Michael Jackson have something in common: all of them suffered the consequences of blatant medical mistakes. In Beethoven’s time lead containing salves to plug the drainage holes from removing fluid from his abdomen caused lead poisoning. In this chapter I review also how the illnesses of the above-mentioned celebrities were treated, but then ask the question: “What could have been done better to prevent some of the disastrous treatment outcomes?”

Chapter 2 deals with how modern drugs seem to come and go. We learn that twenty-first century medications that are touted as the latest therapeutic agents are having their potentially deadly consequences too: COX-2 inhibitors, the second generation of “improved” arthritis drugs cause strokes and heart attacks! Your doctor may still prescribe some of these dangerous drugs for arthritis now.

Chapter 3 deals with the fact that medical treatments for people’s diseases may be inappropriate when the doctor treats only symptoms, but nothing is done about the causes of their illnesses. This is a scary thought.

Chapter 4 asks the question whether we could learn something from these poor health outcomes in the past, so that we will be able to prevent any disastrous outcomes pertaining to our own health care in the present and future. As we will see, the problem today is still the same as it was in the past, namely that many physicians still like to treat symptoms instead of the underlying cause of an illness. Even though Big Pharma has the seducing concept of a pill for every ill, it is not always in your best interest, when these medications have a slew of side effects. “Gastric reflux” means a mouthful of stomach acid. This is a fact the suffering patient knows already! Big Pharma simply offers the patient with the symptom of gastric reflux a multitude of medications to suppress this symptom. But it is more important to dig deeper to find the reason for the illness and treat the underlying cause.

Chapter 5 concentrates on the brain and how we can keep our brains functioning optimally until a ripe old age. This review spans from prevention of head concussions to avoiding type 3 diabetes (insulin sensitivity from overconsumption of sugar). It manifests itself in Alzheimer’s disease. It is a form of diabetes of the brain that leads to deposits of a gooey substance. Prevention of this condition is also reviewed .

Chapter 6 reviews what we now know about how to keep a healthy heart. Certain ingredients are necessary such as regular exercise, a healthy Mediterranean diet, supplements etc. The good part is that what is good for the heart is also good for the brain. You are preventing two problems (brain and heart disease) at the same time.

Chapter 7 delves into the question why healthy food intake matters. Without the right ingredients of our body fuel, the body machinery will not work properly. The Mediterranean diet is an anti-inflammatory diet that is particularly useful.

Chapter 8 talks about healthy limbs, bones and joints. We are meant to stay active in our eighties and nineties and beyond. No osteoporosis, no joint replacements, no balance problems that result in falls! Learn about how to deal with problems like these in this chapter.

Chapter 9 deals with detoxification. What do we do as we are confronted with pollution, with radiation in the environment and poisons in our daily food? A combination of organic foods, intravenous chelation treatments and taking supplements can help us in that regard.

Chapter 10 deals with reducing the impact of cancer in our lives. A lot of facts have come out in the past 10 years telling us that reduction of sugar and starchy food intake reduces cancer. Curcumin, resveratrol and vitamin D3 supplements also reduce cancer rates as does exercise and stress management. All of this is reviewed here.

Chapter 11 checks out your hormone status. Women need to avoid estrogen dominance; both sexes need to replace the hormones that are missing. By paying attention to your hormonal status and replacing the missing natural hormones with bioidentical ones, most people can add 10 to 15 years of useful, active life!

Chapter 12 is refining some of the thoughts about anti-aging. You will learn about the importance to keep your mitochondrial DNA healthy. Apart from that there are ways how to keep your telomeres longer; certain supplements that are reviewed will help. Also your lifestyle does make a big difference in how old you can turn.

Chapter 13 investigates the limits of supplements. Many supplements are useful, but you do not want to overdo it and get into toxic levels. More is not necessarily better!

Chapter 14 reviews an alternative approach to treating ADHD. Attention deficit and hyperactivity disorder has been over diagnosed, has been neglected and has been over treated with dangerous drugs. An alternative treatment plan is discussed, which includes a combination of therapeutic steps.

Chapter 15 gives you a brief summary of the book.

Kirkus Review

Kirkus Reviews reviewed the book on March 17, 2016: “A retired physician details how various preventative measures can fend off disease and disability in this consumer health guide. Schilling (A Survivor’s Guide to Successful Aging, 2014) had a family medicine practice in Canada for many years before retiring. Although Schilling ventures into some controversial territory in his latest book, it’s generally an engaging, helpful synthesis of ideas that draws on reputable research from the Mayo Clinic and other sources. Overall, it serves as an intensely detailed wake-up call to the importance of preventative health. He largely brings an accessible and even-tempered tone to his narrative, warning readers, for example, that preventative health measures can only aid in “a delay of aging, not ‘eternal living.’ ” A thought-provoking, impassioned plea to be proactive about one’s health.”

Healing Gone Wrong – Healing Done Right

Healing Gone Wrong – Healing Done Right

Conclusion

In this book it becomes evident that it is better to prevent an illness whenever possible rather than to wait for illness to set in and cause disabilities or death. You heard this before: “Prevention is better than a cure” or “an ounce of prevention is better than a pound of cure”. I will give an explanation, based on scientific data that there is indeed evidence to support these notions on a cellular level. The mitochondria, the energy packages within our cells, are the driving force that keep people vibrantly healthy well into their nineties. All this can only happen when the mitochondria function properly. If the mitochondria are poisoned and as a result of toxins malfunction, we are not looking at a person with vibrant health. Instead sixty or seventy year-olds may be confined to a wheelchair. If you want a life without disabilities, a life without major illnesses and enjoy good health to a ripe old age, you are reading the right book.

The book is written in American English.

Available in the US: http://www.amazon.com/gp/product/1523700904

In Canada: https://www.amazon.ca/Healing-Gone-Wrong-Done-Right/dp/1523700904/  

In other countries the book is available through the local Amazon websites.