Feb
10
2018

What To Do To Stop Eating Junk Food

Eating junk food is a favorite pastime in North America, so what to do to stop eating junk food? Everybody knows that it is not a good choice, and it is known that health problems have a connection to unhealthy eating habits. When you are used to eating junk food, your taste buds are accommodated to the inferior foods that you want to avoid. I would suggest you educate yourself first regarding what junk food is, and next compare it to healthy food. Junk food has additives and taste enhancers.

Monosodium glutamate

Monosodium glutamate is one additive that often is on the ingredient list of processed foods. This is not a harmless flavor enhancer. It belongs into the group of excitotoxins. The substance can destroy brain cells. It also has the potential to give you a nasty headache, especially if larger quantities are in the food. When we look for food, we do not want to get a headache or risk losing our memory down the road. I threw out all MSG containing foods in 2001. To make it challenging MSG comes under many disguised names: autolysed yeast, monosodium glutamate, textured protein, yeast food, sodium caseinate and others.

Read labels and exclude products with MSG in it. It is a good investment into your future without Alzheimer’s disease or other cognitive disorders.

Avoid refined sugar

Next you want to make sure that sugar is excluded from your diet; with this I mean refined sugar as well as sugar from processed foods. If you read food labels, you probably are aware of how much sugar manufacturers include in processed foods. It tastes pleasing, it is cheap and it makes people come back to buy more. But you as the consumer have a right to get rid of this as it causes your insulin level to increase, and on the long term paves the way to diseases such as diabetes, cardiovascular diseases (heart attacks and strokes), Alzheimer’s disease and others. As a result I do not buy anything with added sugar.

Use stevia instead of sugar

If I like to sweeten my coffee or yogurt, I can do it by adding a tiny bit of stevia, a natural plant sweetener. There are no calories, there is no insulin response, no worry about diabetes or Alzheimer’s, and no tooth decay either.

Cook more meals at home and avoid restaurants

The more you can cook at home, the easier it is to take your lunch salad along in a BPA free container. It is better for you, better for your health, and by actively avoiding junk outlets; restaurants will get the message and offer healthier food choices down the road. It is a process of years to change consumer habits. You will be the beneficiary. Here is an example how to order food in a restaurant, if you want to make healthy choices:

Eating out at a restaurant

What would you like for a drink?

The first thing the waiter will do is asking you what drinks you want to order. My answer is sparkling (or non-sparkling) mineral water. This establishes that I do not want to order alcoholic drinks or sugary sodas. They are empty calories; they are also overpriced. But if you really want to have a glass of red or white wine, make sure that you pick a good one and only one glass. Studies have shown that the resveratrol in it will prevent heart attacks, but too much of it undermines your liver and the healthy condition of your pancreas.

The main event

Next the waiter will come with bread and butter. It is best to skip these offerings. I just say: “Thank you, but I don’t eat bread or pasta”. As a matter of fact I usually tell the waiter when I order the mineral water that I do not want any bread. Waiters nowadays understand: no carbs! (The truth is that you do indeed eat carbs. Vegetables and fruit are low-density carbs!) It goes like a red line through the rest of the order. It starts when I order my meal: a bowl of salad as a starter is great, and next I order meat or fish with a side of vegetables. The waiter understands, and often restaurants will offer to substitute the pasta or potatoes with extra vegetables.

Dessert anybody?

After the meal the waiter will temptingly produce the dessert menu: any dessert today? The answer is a simple “no, not today”. After a filling meal nobody needs a dessert that is off the calorie Richter scale!

Usually this is the blueprint for me at a restaurant. With this approach you will avoid weight gain, but you will leave the restaurant satisfied. Unfortunately these days in most restaurants we do not have any choices yet with regard to organic food. More restaurants are starting to pay attention. Again, it is consumer habits that make a change!

At home the thought processes are very similar to eating out in a restaurant. You develop some discipline and stick to healthy foods. Avoid sugar, MSG, too many starchy foods and processed foods. Before you know it, it becomes a lifestyle that you take with you wherever you go.

Shopping for healthy foods

As we want to go out to restaurants less and eat at home more, it is important that I tell you how to shop. We want healthy food with no or a minimum of insecticide residues on vegetables or fruit. This is why it is important to buy a lot of organic vegetables and fruit.

Before you start shopping I suggest you look at your fridge critically. Cut out all refined sugar and starchy foods. So you go through the content of your fridge and look at all of the labels to assess what every food contains. I did exactly this in 2001 and 1/3 of the content of my fridge had to be thrown out, as it was incompatible with a sensible diet. Not to add any additional sugar was easy, but things like jams that have 45% to 50% of sugar in them had to be removed as well. Bread had to go and all soft drinks (=sugary drinks) had to go. It was quite an eye opener.

Maintenance of your no sugar program

In the meantime we shop at the periphery of a grocery store as follows.

Start at the deli: your low fat cheese varieties, roasted chicken or turkey breast or lean ham if you choose are all found here.
Go on to the meats: lean cuts of beef, pork, chicken, lamb will be found here.
Fish and seafood: salmon, sole, cod, halibut, trout, mussels, shrimp will be there to choose from.

Continue at the vegetarian section: tofu, tempeh and veggie burgers. It is debatable how valuable soy products really are. About 95% of the soy crop is genetically engineered, and textured soy protein has nothing to do with a “natural” product.
At the dairy section you will look for 1% milk, almond milk or pea protein milk, yogurt, low fat cottage cheese, and more low fat variety of cheeses.

More shopping

The bakery section is also at the periphery, but you will want to be very discerning, as these are products which offer not much more than dense carbohydrates, trans fats, and a lack of minerals. The dozen bagels will not offer you much nutritional bang for your buck!
Finally you will arrive at the produce department. You will likely go for all the green leaf choices like leaf lettuce, kale, chard, spinach, as well as the cabbage varieties (broccoli, green cabbage, sui choy, napa cabbage and cauliflower).

More shopping for the right foods

The other ones on your list are the intensely colored non- root vegetables like tomatoes, red and green peppers, also mushrooms, which are a power house of minerals, green beans, asparagus, as well as onions and garlic. You will also buy your fruit: apples, oranges, grapefruit and other citrus, pears, berries, and pineapple. You will go easy on mango, papaya, and banana because of their high sugar content.

The deep frozen section can be your best ally

Look for deep frozen vegetables, fruit, and fish as well as meats. As vegetables are quickly readied for the freezer, their vitamin content can be higher than that of a vegetable that has spent 8 days in transit from the field to the produce department. The deep frozen section also gives you access to a lot of variety. You’ll be able to enjoy some strawberries, even when they are not in season. Read the labels, as some fruit have been packaged with sugar syrup. Look for the varieties, where no sugar has been added. The frozen section also contains some highly processed items: deep-fried foods and dessert selections, which may not be an accessory to full health, but rather to an empty wallet.

Canned foods

Canned foods can be useful, as long as you are dealing with fruit that are canned in their juices and not in sugar syrup. The vegetables are less valuable in vitamins than their deep frozen counterparts. Watch out for varieties, where less salt is added. The label will tell you” low sodium”. With canned products it is also important to pay attention to the can. Many of the cans are lined with a BPH product, which is an immune disruptor. Look out for cans, where the label clearly states that they are “BPH free.”

Some more staple foods

You will not have to navigate all the aisles, except for your cleaning products and your cosmetics. There are some staples, which you will also require: olive oil, some olives, almonds or macadamia nuts (raw or dry roasted). The one cereal product, which is valuable, are coarse rolled oats and some pot barley. Both varieties carry a lot of fibre, which makes them very useful food staples. Avoid the “quick cooking” or “instant” oats. Due to the processing, the carbohydrates are absorbed a lot faster and consequently trigger a higher insulin response.

Shopping for drinks

You will wonder about drinks next. Having passed the colas, ginger ales and other sugar sodas you may eye the diet drinks. Beware of drinks sweetened with aspartame. There is increasing evidence that phenylalanine (brand names: Aspartame, NutraSweet and Sweet’N Low) is not a “harmless” sweetener. Newer research has shown that it can cause gastroesophageal reflux (=GERD) and migraine headaches.

Stevia, a sweetener from a South American plant, does not have harmful effects. It is safe to use as a sweetener and does not cause an insulin response. You are best served with mineral water, purified drinking water, herb teas, tea or coffee. Fruit juices do have vitamins and minerals, but they are high in sugar causing an insulin release.

No canned fruit juices

You would not really eat 3 large apples in one sitting. So why insist on drinking 8 oz. of apple juice? You’ll ingest all the sugar and forgo the fibre! You’ll also notice, that a lot of fruit juices have been mixed with sugar, water, artificial flavor, some color, and as an apology some vitamin C is often on the list of ingredients. They are appearing on the shelves as “a good source of vitamin C”. In reality we are dealing with flavored, colored sugar water. Use your own judgment, whether you want to spend your dollars on this selection!

Convenience and snack foods

In the aisle adjacent to the pop you will very likely encounter a huge selection of convenience and snack foods. They have several things in common: you have met them on TV, some will be high in starches and fat (chips), others will be high in starches, sugar, and fat (cookies, donuts, cream pastries), and we are dealing with trans fats. Do take time to read the listed ingredients, and then decide, whether you and those who eat in your household deserve nutritional garbage. You have now completed your round trip in the supermarket.

Summary of your round trip in the supermarket

To sum up the most important facts, remember the following:

  • Do most of your shopping at the periphery of the store.
  • Look for fresh products – the less processed, the better.
  • Read the ingredients on labels.
  • Stay away from nutri-garbage
  • Buy the majority of your fruit and vegetables as organic produce. There are exceptions like raspberries, blackberries, asparagus, avocado where the regular produce is clean. But strawberries, bell peppers, broccoli, celery, grapes, spinach and tomatoes are all part of the crop that has been sprayed. Beware of the “Dirty Dozen“!
What To Do To Stop Eating Junk Food

What To Do To Stop Eating Junk Food

Conclusion

When you cut out junk food and adopt healthy food habits , you will loose a few pounds, which is natural. The sugar and starchy food you cut out had calories that you are no longer consuming. This makes you loose some weight. But you will feel more energy, because you are feeding your body what it needs. You no longer get those hypoglycemic episodes that made you tired before. Essentially you switched from the Standard North American diet that includes junk food to a Mediterranean-type diet. This type of a diet has been found to be anti-inflammatory. It prevents arthritis, diabetes, heart attacks and strokes. It may also prevent some cancers, but various studies on cancer get different results. If you follow this type of a diet without junk food you will live a longer life and stay healthier.

Jan
27
2018

Bacterial Toxins Threatening The Brain

Dr. Robert G. Silverman gave a talk about bacterial toxins threatening the brain. He spoke at the 25th Annual World Congress on Anti-Aging Medicine in Las Vegas on Dec. 15, 2017. First of all, he pointed out how changes in the gut flora can affect the integrity of the gut wall. In addition this can eventually this lead to a leaky gut syndrome. But it does not end here. As a result the toxins enter the blood stream and affect the blood/brain barrier. Consequently in the end various neurological diseases can develop from this.

Here I am giving a brief overview of the talk by Dr. Silverman. But he was not the only one speaking to this subject. Several other speakers also brought up this subject throughout the conference. They stressed the importance of rectifying any gut dysbiosis to stop leaky gut syndrome and a leaking blood/brain barrier.

Leaky gut syndrome

When the gut flora changes there are often enteropathogenic E. coli strains, Shigella and Salmonella that invade the lining of the gut causing leaky gut syndrome. When toxins enter the blood stream, the body is starting to form antibodies against various proteins. Antibodies are acting against various targets: bacterial cytotoxins, cytoskeletal proteins, tight junction proteins and food antigens. Lipopolysaccharides (LPS) from toxins of gram-negative gut bacteria can also leak into the blood. This affects key organs like the liver, the heart, lungs, the joints, the immune system and the thyroid. When this process has gone on for some time, the blood/brain barrier is breaking down next. The intestinal inflammation causes the release of inflammatory cytokines that circulate in the blood stream. The cytokines cross the blood/brain barrier and activate the support cells in the brain, called microglia. This in turn causes inflammatory degenerative changes in the brain.

Blood/brain barrier

LPS circulating in the blood from gut bacteria endotoxins increase the permeability of the blood/brain barrier. This is bad news for the brain as it becomes vulnerable to attacks from the antibodies mentioned and from food particles. Dr. Silverman cited papers showing that circulating antibodies that cause inflammation in the brain can be the starting point for early Parkinson’s disease. Autoimmune antibodies can cause even depression.

Intestinal permeability can be assessed by various antibody constellations. For instance IgA antibodies point to an ongoing issue/early leaky gut syndrome. IgM antibodies indicate early onset and IgG antibodies chronic issues of leaky gut syndrome. If you add various antigens like LPS, zonulin and actomyosin you can pinpoint which structure of the gut wall is affected by leaky gut syndrome, and the antibody type adds more information about the timing of the onset of leaky gut syndrome.

Bacterial toxins threatening the brain when BBB damaged

As I already mentioned the blood/brain barrier (BBB) is often simultaneously affected when there has been leaky gut syndrome. There may be a delay, but eventually the BBB breaks down also, and the brain will be in jeopardy. Dr. Silverman gave an example of how depression can develop as result of a breakdown of the BBB. Chronic intestinal inflammation can suppress the sensitive hippocampus cells from regenerating. Physicians call that impairment of hippocampal neurogenesis. Inflammatory cytokines damage the neuronal cell progenitors. As a result patients with inflammatory bowel disease can have mood disorders and cognitive impairment. Sophisticated BBB blood tests can pinpoint whether the BBB is intact or establish whether there is impairment. The important thing to remember: there is a gut brain connection.

Fixing the gut to stop bacterial toxins threatening the brain

In order to fix the BBB, you must first concentrate on fixing leaky gut syndrome.

  • Avoid gluten, as gluten is causing inflammation of the gut wall.
  • Start taking probiotics that contain more than 30 Billion lactobacillus plantarum, lactobacillus acidophilus and Bifidobacterium lactis per daily dose.
  • Do a heavy metal detox involving phytonutrients, hops, turmeric, Andrographis, zinc, polyphenols, omega-3 fatty acids, and watercress plant extract. Andrographis, also known as the “King of Bitters”, is an Ayurvedic medicine used to promote digestion and stimulate appetite.

Nutrients to fix the blood/brain barrier

Dr. Silverman uses the following nutrients to repair the blood brain barrier.

  • Acetyl L-Carnitine: this helps to protect the mitochondria from oxidative damage
  • Berberine: reduces inflammation in brain injuries
  • Alpha-lipoic acid: preserves the integrity of the BBB by controlling oxidative stress
  • Curcumin: decreases brain swelling, preserves the BBB and increases tight junction protein in brain cells
  • Vitamin D3 (5000 IU or more): protects the BBB by various mechanisms
  • Omega-3 fatty acids: they increase cell membrane fluidity and protect the BBB
  • Resveratrol: reduces inflammation and restores the BBB

Neuroplasticity

In order for the brain to adapt to changes, it must be flexible, which means on a cellular level that nerve cells form new synapses, neurological pathways etc. This is what neuroplasticity means. Here are the factors that Dr. Silverman listed as facilitating neuroplasticity.

  • Regular exercise
  • DHA from fish oil capsule supplements
  • Turmeric
  • Whole coffee extract
  • Alpha-lipoic acid
  • Lactobacillus brevis and Bifidobacterium longum
  • Bifidobacterium animalis Lactis 420 (B420)
  • Probiotics: they feed the healthy gut bacteria (e.g. apple cider vinegar)
  • Elevate magnesium in the brain through L-threonate
Bacterial Toxins Threatening The Brain

Bacterial Toxins Threatening The Brain

Conclusion

In the last few years it has become abundantly clear that leaky gut syndrome is not an isolated matter. It is invariably connected to a breakdown of the blood/brain barrier (BBB). Leaky gut syndrome alone is bad enough as it can lead to a number of autoimmune diseases, like Hashimoto thyroiditis and others. But when the BBB is affected, antibodies can now affect nerve cells, can cause Parkinson’s disease, depression, and even Alzheimer’s disease. There is no reliable database for what can happen to the brain when the BBB breaks down.

Because of these connections it is important to sanitize the gut, re-establish a healthy gut flora and overcome leaky gut syndrome. This will at the same time repair the broken down BBB. It will also prevent further possible damage to the brain in the future. Your gut health is your brain health. Take care of both your gut as well as your brain!

Incoming search terms:

Dec
02
2017

Vitamin K For Bones And Arteries

Vitamin K for bones and arteries is gaining a lot of attention as a valuable supplement. Most of all in the blood vessels, but in addition in the heart, lungs and kidneys the matrix GLA protein is a key substance. Vitamin K2 is crucial for removing calcium from these organs, as matrix GLA protein is carboxylated. Carboxylation of the GLA protein functions much as a broom. This removes all superfluous calcium from blood vessels and organ tissues. If there is a lack of vitamin K2 intake, matrix GLA protein is uncarboxylated, which as a result invites vascular calcification. Essentially vitamin K2 has emerged as an important player in the regulation of bone conditions like osteoporosis, but also in the prevention of hardening of arteries. Vitamin K2 removes calcium from blood vessels and deposits calcium in bone preventing osteoporosis. I will review some key publications, which support this.

Arterial stiffness study in postmenopausal women

Aging blood vessels become stiff from calcification. By removing calcium it seems like the arterial wall becomes more flexible again. Dr. Knapen and colleagues from Maastricht University, The Netherlands followed 244 healthy, postmenopausal women for 3 years in this double blind, placebo-controlled 2015 study.

120 women received 180 micrograms of vitamin K2 (as MK-7) once daily. 124 women received placebo pills. Next researchers checked arterial stiffness through two types of tests. First of all, carotid intima-media thickness was evaluated by echo tracking. In addition aortic stiffness was tested by carotid-femoral and carotid-radial pulse wave velocity. After 3 years there was a significant reduction of uncarboxylated matrix GLA by 50%. This was missing in the placebo group. All of the markers for arterial stiffness showed a reversal improving flexibility above the median. This shows that hardening of arteries in postmenopausal women is reversible with the help of vitamin K2.

Bone metabolism study in Japanese men and women

This 2015 Japanese study investigated what the minimum amount of necessary vitamin K2 would be to improve osteocalcin carboxylation.

First of all, study 1 examined the effect of 0, 50, 100, or 200 micrograms of vitamin K2 (=menaquinone-7) daily. A group of 60 postmenopausal women received vitamin K2 for 4 weeks. Only the 200 microgram per day dosage showed an effect of carboxylating osteocalcin.

Second part of study

Furthermore, study 2 consisted of 120 men and women. Measurements involved the ratio between carboxylated and uncarboxylated osteocalcin to demonstrate the effect of vitamin K2. As a result of study 1 only a placebo group, a 100-microgram and a 200-microgram daily vitamin K2 group was part of the investigation. Both, the 100 microgram and the 200 microgram doses, reduced the circulating uncarboxylated osteocalcin fraction. Hence they concluded that vitamin K-2 effectively keeps the calcium in the bones and prevents osteoporosis. The investigators recommended taking more than 100 micrograms of vitamin K-2 per day to improve osteocalcin carboxylation.

You can find more detail regarding the interaction of calcium, vitamin D3 and vitamin K2 in this link.

Trabecular bone structure preserved in postmenopausal women

148 postmenopausal women were participating for 12 months in a randomized, placebo-controlled, double-blinded clinical trial. All these women had osteopenia. All of them received supplements with calcium and vitamin D3. In addition they received 375 micrograms of vitamin K2 or placebo pills. Examination involved tests for bone mineral density with dual X-ray absorptiometry (DXA). Furthermore a high-resolution CAT scanner determined the microarchitecture of the tibia bone.

After 3 months the uncarboxylated osteocalcin decreased by 65.6% rather than the placebo group of only 6.4% decrease. The trabecular number, spacing and thickness in the tibial bone were unchanged in the vitamin K2 group. In contrast to that there was a clear deterioration of the bone structure in the placebo group.

Summary of trabecular bone study

The bone density studies showed no detectable difference between the groups. The deterioration of the trabecular microstructure in the placebo group was consistent with expected age-related changes. On the other hand, the vitamin K2 group clearly demonstrated preservation of the trabecular bone structure in the tibial bone.

Vitamin K2 helps to eliminate toxic effects of calcium

This 2015 publication from Krakow, Poland explains rather well how vitamin K2 is important to reduce calcium from blood vessels.

At the same time the article points out that vitamin K2 is important for depositing calcium into bones to prevent osteoporosis. The removal of calcium from blood vessels occurs by carboxylation of matrix GLA protein. This functions like a shield to protect blood vessels from calcium entering into the arterial wall. This way the arteries are probably safe from calcification, and hardening of the arteries cannot take place. On the other hand calcium is binding to the bone. As explained above the hormone osteocalcin is responsible for this.Vitamin K2 is the main player in the process of carboxylization. As a result vitamin K2 makes it happen that calcium travels into the bone, where it belongs.

Rotterdam Study: reduced heart attack rates from vitamin K2

4807 subjects from the Rotterdam Study in the Netherlands were part of a study for considerable time (about 10 years) with no sign of any heart attack in the beginning.

The investigators were interested to correlate the effects of various doses of vitamin K1 and K2. How would this impact the frequency of heart disease, hardening of the aorta and all-cause mortality? Researchers adjusted the data for smoking, age, gender, body mass index, diabetes, education, and dietary factors. Next they compared the middle and upper tertile groups of vitamin K1 and K2 to the lower tertile of vitamin K1 and K2.

Results of Rotterdam Study

Most noteworthy, the relative risk for coronary heart disease was lower for the middle and upper tertile of the vitamin K2 group. They found that the middle tertile vitamin K2 intake lowered heart attacks by 27%. It was especially relevant that the upper tertile of vitamin K2 intake lowered heart attack rates by 57%.

In addition, all-cause mortality also showed a reduction for the middle tertile of vitamin K2 by 9% and for the upper tertile by 26%. Finally, severe aortic calcification was 29% less for the middle tertile of vitamin K2 and even 52% less for the upper tertile. Intake of vitamin K1 (=phylloquinone had no impact on any of the outcomes. The investigators concluded that adequate intake of vitamin K2 (=menaquinone) was crucial for anybody’s health. First of all, vitamin K2 lowers heart attack rates, in addition it reduces hardening of the arteries including the aorta and finally, it lowers all-cause mortality.

Vitamin K For Bones And Arteries

Vitamin K For Bones And Arteries

Conclusion

This review shows evidence that vitamin K2 supplementation is important for the prevention of osteoporosis and heart disease. It prevents heart attacks and hardening of arteries, including the aorta. The dosage necessary to achieve this is only 200 micrograms of vitamin K2 per day. However, in Japan higher doses like 375 micrograms per day are the common protocol for prevention of osteoporosis.

Effect of vitamin K2 for bones and arteries

How does vitamin K2 work? In the blood vessels vitamin K2 carboxylates the matrix GLA protein. Essentially this keeps calcium out of the arterial wall and prevents hardening of the arteries. This reduces heart attacks and significantly lowers mortality from heart attacks as well. The second effect of vitamin K2 is on bones. Vitamin K2 prevents osteoporosis to a large extent. It does so by binding calcium to the bone. The hormone osteocalcin, which is carboxylated by vitamin K2 effectively moves calcium from the bloodstream into the bone and keeps it in the bone. If you take vitamin K for bones and arteries, you double the benefit from this simple vitamin. Remember to take 200 micrograms of vitamin K2 daily. The benefits are certainly remarkable!

 

Nov
26
2017

Prevent Cancer, Cut Sugar

If you want to prevent cancer, cut sugar! This is the message of an Oct. 13, 2017 study. The research team had done experiments for 9 years, when they concluded that it was refined sugar that caused spontaneous mutations of RAS proteins. RAS proteins are responsible for cell growth. When a substance like sugar turns them on all the time, they can cause mutations that lead to cancer. In this article research concentrated on yeast cells, and the publication is in Nature Publication. The CNN publication describes this in simpler language. Essentially the research team found that a sugar molecule, fructose-1,6-bisphosphate, was responsible in obese patients and in diabetic patients to mutate a RAS protein, which as a result can turn into an oncogene causing cancer.

Evidence that sugar causes obesity and type 2 diabetes

  1. A September 2017 US study followed 41 children age 9 to 18 with initial fructose consumption of >50 g/d. The treatment of the children consisted of an isocaloric fructose restriction of only 9 days. Following that their liver fat content decreased from 7.2% to 3.8%. In addition intraabdominal fat decreased and new fat production was reduced from 68% to 26%. The authors pointed out that reduction of sugar consumption in obese children was a very effective treatment tool.
  2. This August 2017 study from Helsinki followed 71 obese males for 12 weeks. They consumed 75 grams of added fructose every day in addition to their normal food intake. The liver fat content increased and cardiovascular risk factors worsened as blood tests showed. The investigators concluded that the adverse cardiometabolic effects were a result of the added fructose. They were not secondary to the weight gain (a theory in the past).
  3. This February 2017 study from the US the Taiwanese Healthy Aging Longitudinal Study in Taiwan was also of interest. It consisted of a 5-year long study involving middle-aged and elderly patients with type 2 diabetes. The result was that patients with more physical activity, a better diet and a higher score regarding psychosocial health did much better with respect to managing their diabetes. Maintaining a healthy lifestyle is particularly important for the elderly to prevent diabetes.

Evidence that obese patients and type 2 diabetics get more cancer

  1. In this 2016 study from Poland the effect of diabetes causing various cancers was under investigation. The authors pointed out that worldwide in 2014 there were 387 million cases of type 2 diabetes and it was still rising. When they looked at correlation between various cancers and type 2 diabetes they found that diabetes had the strongest association between pancreatic cancer and liver cancer. But there was also an association between diabetes and breast cancer, bladder cancer and kidney cancer. Head and neck cancers were more frequent among diabetics. Some diabetic medications made cancer frequencies worse, others, like metformin made them better.
  2. In this March 2016 article from the BJC (British Journal of Cancer) cancer frequencies were correlated to patients with obesity and to patients with diabetes. Researchers found that some types of cancer correlated with obesity, whereas others did with diabetes and not with obesity. They found that type 1 diabetes had its own set of cancer risks while type 2 diabetes had a different set of cancers that correlated to the disease

More on cancer risks in diabetics

  1.  A 2015 study from Malaysia with an 11-year follow-up describes that type 2 diabetes had increased in the population which researchers studied. The investigators concentrated on a female population where they found a strong correlation between diabetes and endometrial cancer, ovarian cancer, breast cancer and cervical cancer. In a group of 860 cancer patients they found that 26.5% were diabetics. They were at a much higher risk of getting these cancers.
  2. A 2016 study from the US examined 2,836 veterans who had problems with their esophagus. 1,704 received a diagnosis of esophageal adenocarcinoma, 1,132 of them had gastroesophageal reflux disorder. Among the cancer patients there were 30.8% diabetics. The researchers calculated that for diabetics there was a 2.2-fold higher risk of developing esophageal cancer. The only other risk factor they could identify was nicotine dependence, which showed an association with a 1.7-fold risk of to develop esophageal cancer.

Evidence that sugar causes cancer

As explained earlier research found that fructose-1,6-bisphosphate is responsible in yeast cells to lead to RAS mutations. Human cells have the same metabolism as yeast cells, and they also have RAS protein and fructose-1,6-bisphosphate. Fructose-1,6-bisphosphate is important for cancer development in humans. Yeast cells are diploid cells as are human cells. But yeast cells are not human organisms, so the parallel stops at one point.

  1. A 2014 study from China showed that fructose-bisphosphate aldolase was a marker for lung cancer metastases. This enzyme breaks down fructose-1,6-bisphosphate. Depletion of fructose-bisphosphate aldolase A reduces cell motility of cancer cells and the ability to cause more tumors. In other words, the key for cancer cells to thrive is the presence of fructose-1,6-bisphosphate.
  2. In this 2013 study from Beijing gastric cancer biopsies research examined these samples for fructose-1,6-bisphosphatase, the enzyme that breaks down fructose-1,6-bisphosphate.

The enzyme was under expressed in 86.2% of the gastric cancer biopsies. This meant that glycolysis was stimulated in the cancer cells. An overabundance of fructose-1,6-bisphosphate caused tumor cells to get into an active phase and to metastasize.

Discussion of why sugar causes cancer

I have previously discussed this topic in a blog 3 ½ years ago. At the time a few steps were missing from the knowledge we have today. Nothing has become different regarding the connection of sugar overconsumption and the risk of developing cancer. First of all, we have learnt that fructose overconsumption or sugar overconsumption leads to fructose-1,6-bisphosphate in the blood, which stimulates RAS proteins to mutate and stimulate oncogenes to cause cancer. In addition, people who are overweight, obese or have diabetes have too much insulin production, which can also lead to cancer causation. Finally, obese people have a lot of very active kinins in the blood that can cause cancer as well. In conclusion, what has changed between March 2014 and now is that we have a lot more detail why things happen the way they do. Connections that used to be obscure have now a rational explanation.

The message is that we need to cut out refined sugar from our diet, cut out starchy foods and cut out processed foods. This will improve our metabolism and reduce our risk of getting cancer. We will also lose weight, which I have experienced in 2011 when I lost 50 pounds over 3 months. What did I do? I was just doing what I described to you: cutting out sugar, starchy foods and processed foods.

Prevent Cancer, Cut Sugar

Prevent Cancer, Cut Sugar

Conclusion

Want to reduce your risk for getting cancer drastically? Then cut out sugar and starchy foods along with processed foods (which have too much sugar in it).  Strangely enough it was only now that researchers have found the missing link. The culprit is fructose-1,6-bisphosphate, a metabolic byproduct from sugar consumption. It stimulates a RAS gene, which can mutate, turn into an oncogene and eventually cause cancer. This fact was not known a few years ago. But the knowledge that cancer can occur due to diabetes, obesity and insulin resistance goes back a long time.

We need to learn from science: cut out refined sugar, starchy foods and processed foods. This will change insulin resistance into insulin sensitivity. Fructose-1,6-bisphosphate will not accumulate, but get normally metabolized. This way fructose-1,6-bisphosphate does not pose a problem for RAS proteins. Your insulin level will normalize, the previous kinin overproduction will disappear and your risk for cancer will decrease.

We have allowed the sugar industry to undermine our health for too long. It is time to take back the control over our lives, assess our food habits and make the necessary changes.

Incoming search terms:

Sep
02
2017

Resveratrol Effective In Humans

Resveratrol has been labeled a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

A 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage I hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension was defined as a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Each subgroup was divided into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years. The purpose of the trial was to determine the effect of resveratrol, which was added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gamma-glutamyl transferase (Gamma-GT) were normal in the group where resveratrol had been added.

Resveratrol effective in humans: diabetes patients

Resveratrol helps diabetes patients. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. Resveratrol was given to a high group (1000 mg per day), a low group (150 mg) and a placebo (fake pills) were given to the third group. The end point was an elevation of the bone alkaline phosphatase (BAP). This was measured in the beginning of the study and at 4, 8 and 16 weeks. The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can potentially be used as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

The Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is known for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11states enrolled in the study. In 1980 diet sheets were used to determine who was adhering to a Mediterranean diet. 4676 middle-aged participants were identified to qualify for this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. Fish and lean meats were also consumed. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres. The lead author Marta Crous-Bou stated that overall healthy eating was associated with longer telomeres compared to the control group. But the strongest association was found in women who adhered to the Mediterranean diet when compared to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Longer telomeres have been found to be associated with the lowest risk to develop chronic diseases and the highest probability of an increased life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. It has been shown in humans that increased physical activity elongated telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

As this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol can also be used in combination with other cancer treatments, which improves survival figures. As the link above explains, more cancer clinical trials with a variety of cancers and larger patient numbers are required, but many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

In this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has been shown to be anti-inflammatory. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. As this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study has also confirmed that resveratrol from red wine is what is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. 1500 mg of resveratrol or placebo were administered daily for 3 months. Serum total testosterone was decreased by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%. Fasting insulin level was reduced by 31.8%. At the same time insulin sensitivity was increased by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

A double blind, randomized, placebo-controlled study was done on 50 diabetics. The cardio-ankle vascular index (CAVI) was used to determine arterial stiffness. The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics are known to have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. Bowel disease questionnaires were used to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group was given 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. It is known that the hippocampus is the seat for short-term memory, which is lost in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. Because of these combined anticancer properties resveratrol is a chemotherapeutic agent that can be combined with conventional anticancer drugs.

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

Aug
19
2017

No More Macaroni And Cheese

Two years ago Kraft’s was in the news and I said then “no more macaroni and cheese”.  At that time they promised to make macaroni and cheese more nutritious by removing artificial coloring and artificial flavors. Now they are in the news because industrial chemical phthalates have been found in almost every sample of cheese powder that is used to make macaroni and cheese.

Phthalates are powerful hormone-disrupting chemicals that are toxic to children and pregnant women. Prenatal exposure to phthalates has been linked to abnormal brain development and abnormalities of the reproductive system. Potentially 725,000 American women of childbearing age are at risk. Should they get pregnant, their babies would be at the receiving end of toxic phthalates. In Europe new regulations about phthalates were introduced in 2011. In North America the FDA has been negligent in enforcing legislation to keep the US population free of phthalates in their food.

Background information about phthalates

Phthalates are industrial chemicals that are widely used in cleaning agents like soaps, plastics, rubbers, inks, adhesives and fragrances. Phthalates in plastic materials increases the durability and longevity, but also the flexibility and transparency of plastic.

The Center for Disease Control and Prevention describes on its website how a large percentage of the population has phthalates in their urine. This proves that unsuspecting customers are ingesting phthalates, which potentially poses a tremendous challenge.

Should phthalates be more vigorously legislated as they have been in Europe?

Effects of phthalates on body

It seems that males are more sensitive to the toxic effects of phthalates than females. Males experience testicular atrophy and shrinking of the prostate gland. The sperm count goes down, which can lead to infertility. Pregnant women are at risk of having babies with genetic defects due to exposure to phthalates. Many cosmetic products contain phthalates and due to lax FDA supervision many cosmetics are not even labelled, when they contain phthalates (lipsticks, make-up).

Apart from infertility issues phthalates are also responsible for allergies, some cases of obesity, asthma and breast cancer.

There are other clinical conditions that have been linked to phthalate exposure. Behavioral issues, autism spectrum disorder, type 2 diabetes, low IQ and neurodevelopmental issues. A lot of these problems could be eliminated with more awareness of the public, stricter labeling rules of the regulatory agencies and more responsibility shown by manufacturers.

Why nutritionists don’t like macaroni and cheese

Macaroni and cheese belongs into the group of junk foods. In the past it was artificial coloring and artificial flavors that were the concern. Now it came to light that phthalates have contaminated the fat-containing cheese from the packaging. The soft plastic cheese packages contain phthalates and they are easily transferred into fatty cheese, because phthalates are fat-soluble.

From a nutritional point of view macaronis are simply empty starch. This gets very quickly digested into sugar and causes a sugar peak in the blood. High blood sugar causes an insulin peak. Repeated insulin peaks have been associated with premature aging, obesity and type 2 diabetes.

Cheese in macaroni and cheese is the cheapest processed cheese. Here is a table of contents of what macaroni and cheese contains. In this recipe the cheese portion is derived from processed cheddar cheese. But in many macaroni and cheese packages the cheese portion is made up of a mix of protein, fat and milk powder and this mix has nothing to do with cheese. It just tastes like cheese. But all of the cheese powder packages have in common that in 29 out of 30 of the packages tested phthalates were contained in the cheese powder.

The package was made with a plastic coating that contained the phthalates and this leeched into the cheese powder, because phthalates are fat-soluble.

No More Macaroni And Cheese: Toxic “food” is non-food

The problem with macaroni and cheese in today’s society is that it is processed food. The more food is processed, the higher the risk that valuable nutrients get lost. Unfortunately with food processing there is the need to use a food container where the food is stored. But up to now nobody thought that the ubiquitous phthalates that keep the plastic material of the food container flexible and longer lasting could pose any threat to our health by leaking into fatty foods.

However, we did have problems with PBA’s not long ago; they were leaking from baby bottles into baby food. The solution was to abandon BPA bottles.

We have to rethink the whole scenario. As this link shows there are many other chemicals in plastic that can also be toxic.

We can work on the food side and avoid as much processed food as possible. Buy fresh ingredients that you bring home and store in your fridge. Avoid plastic bags. Use glass containers as they have been found to be safe (not leaking chemicals into food).

What can you do, if you want no more macaroni and cheese?

Stop buying macaroni and cheese as processed food. Buy ingredients to make them yourself at home. Here is a recipe of how to make macaroni and cheese: You may in the past have thought that it is much easier to just buy macaroni and cheese in the store. But this is where the phthalates come in. It is our laziness that allows food processors to slip chemicals into our food that could damage us; and some of these potentially harmful chemicals are phthalates. Phthalates probably slipped into our food unintentionally because they are so extremely fat-soluble that they get into the cheese part of macaroni and cheese.

If you want to eat macaroni and cheese, make it yourself as per the recipe provided with the link above.

But I went one step further. I have abandoned macaroni and cheese altogether. I have decided that I don’t need the extra insulin response from the macaroni as I digest them; I also do not need the extra processed cheese, as the fats are not the healthiest. If I want some cheese, I can cut a few slices from an honest organic cheese that was made from organic milk of grass fed cows.

I like eating diversified food from many healthy sources.

No More Macaroni And Cheese

No More Macaroni And Cheese

Conclusion

Sometimes we need to rethink the food that we eat. Do we want to eat macaroni and cheese, because it reminds us of how we grew up? When you hear that toxic phthalates are contained in processed foods you may also say as I do: “No more macaroni and cheese!” As I mentioned, if you really want to eat it, cook it yourself from the basic, healthy ingredients. But I decided no more macaroni and cheese for me, because it is not that healthy. There are healthier foods that I’d rather eat instead.

If more of us would shun processed foods, then the food industry would have to adapt to the population’s healthier food habits and come up with healthier products. We also would not be exposed as much to phthalates that find their way into the food chain from food containers. Rethink your food habits and perhaps one day you can agree with me: “I don’t want non-nutritious processed food! No more macaroni and cheese!”

Incoming search terms:

Jul
01
2017

Advanced Glycation End Products (AGEs)

Advanced glycation end products (AGEs) form when food is cooked at high temperatures. Sugar molecules react with proteins crosslinking them and changing how they function. It prevents proteins from doing their job. Glycation also causes inflammation, which damages mitochondria, the power packages inside cells that provide the body with energy. Overall AGEs lead to premature aging, which comes from the toxic protein reactions. Advanced glycation end products accumulate as glycated proteins in the tissues of the body. This leads to mitochondrial dysfunction.

Effect of advanced glycation end products (AGEs) on the body

The following tissues are frequently affected by the toxic effect of AGEs.

  • The accumulation of AGEs can cause kidney disease and kidney failure (renal failure). In this case the kidneys no longer filter the blood to excrete waste. Hemodialysis may be required.
  • Joint cartilage is damaged by AGEs so it can no longer handle stress and joint stiffness sets in. AGEs are now recognized as a major cause of osteoarthritis.
  • Cross-linked proteins from AGEs can cause Alzheimer’s and Parkinson’s disease. Damaged proteins accumulate in brain cells that disable and kill them eventually.
  • Glycation of LDL particles has been well documented as an important cause of increasing the plaque formation in arteries by LDL. Glycated LDL is much more susceptible to oxidation than regular LDL. Oxidized LDL causes damage to the lining of the arteries and destroys endothelial nitric oxide synthase. This is a critical enzyme, which is involved in maintaining vasodilatation and blood flow. Once LDL has become glycated, it is deformed and LDL receptors can no longer recognize it. This means that glycated LDL continues to circulate in the bloodstream where it contributes to the atherosclerotic process. It forms a plaque which becomes a reason for heart attacks and strokes. Glycation of LDL is particularly common in patients with diabetes.
  • Glycation of the skin sensitizes the skin to UV light damage. It triggers oxidative stress that increases the risk of skin cancer.
  • Glycation damages our eyes. It causes clouding of the lens (cataracts) and it damages the retina. Macular degeneration can ultimately cause blindness.
  • When glycation affects the discs in the spinal cord, this can cause disc protrusions and disc herniations. Often the spinal nerves that are nearby get injured causing limping and leg or arm weakness.

Nutrients to counter AGEs

There are nutrients that can slow down the rate of glycation and as a result will halt the aging process.

Benfotiamine

Benfotiamine is a fat-soluble form of the water-soluble vitamin B1 (thiamine). It has been shown to reverse glycation in cell cultures and in humans.

As a result the damage to the cells that are lining arteries is reduced. Benfotiamine also counters diabetic neuropathy, retinopathy and nephropathy.

Pyridoxal 5’-phosphate

Pyridoxal 5’-phosphate is a metabolite of vitamin B6. It is similar to benfotiamine in that it counters glycation and dissolves deposited AGEs. It is particularly useful to stop fat and protein glycation. In diabetic patients lipid glycation is often a problem as these authors have shown. Pyridoxal 5’-phosphate traps glucose breakdown products before they become part of glycation reactions.

Carnosine

Carnosine is a dipeptide, made up of the amino acids histidine and beta-alanine. It is found in higher concentration in muscle and brain tissue. It scavenges for free radicals and prevents AGE formation. It is preventing both lipid glycation and protein glycation. This publication states that carnosine can play a role in preventing Alzheimer’s disease. As protein crosslinking is prevented with carnosine, tangled protein clumps cannot accumulate and cause Alzheimer’s disease.

Carnosine also reduces blood lipid levels and stabilizes atherosclerotic plaques. This reduces the risk of plaque rupture, which can cause a heart attack or stroke.

Carnosine also has a mitochondria stabilizing function resisting the destructive effects of oxidative stresses.

Luteolin

Luteolin is a bioflavonoid, which can be found in many plants. It has anti-inflammatory effects and works by suppressing the master inflammatory complex, called NF-kB.  NF-kB triggers the production of multiple cytokines and is associated with many cancers, chronic diseases, autoimmune diseases and septic shock. Kotanidou et al. did an experiment where they injected mice with Salmonella enteritis toxin, either with or without luteolin protection. Without luteolin only 4.1% of the mice survived on day 7. With luteolin protection 48% were alive on day 7.

Luteolin has been shown to be effective as an anti-inflammatory in the brain, the blood vessel lining, intestines, skin, lungs, bone and gums.

All these four supplements are available in the health food store. They work together and would be recommendable in diabetic patients where glycation is most prominent. But these supplements are also useful for older people who want to slow down the aging process in general.

Nutrients to slow down mitochondrial aging

Glycation is linked to mitochondrial deterioration and dysfunction. It accelerates aging in every aspect. AGEs (advanced glycation end products) crosslink proteins, lipids, but also damage enzymes and DNA. Mitochondrial energy production is slowed down by glycation. The end result is a lack of energy and slower repair processes, which all depend on mitochondrial energy production. The following supplements have shown some merit in reversing this process.

Pyrroloquinoline quinone (PQQ)

PPQ is a supplement that is known to produce new mitochondria in cells. This helps the energy metabolism of aging cells to recover.

Taurine

Taurine is an amino acid that is found abundantly in heart and skeletal muscles cells, brain cells and cells of the retina. These are areas in the body with high metabolic rates that can burn out mitochondria. Taurine regulates enzymes in mitochondria that harvest energy from food substances. In patients who experience accelerated aging, a lack of taurine can produce an energy crisis. But supplementation with taurine can rescue the cells by reducing oxidative stress and restoring the function of mitochondria in cells that are aging. Brain cells were putting out new shoots, called neurites when taurine was given as a supplement. This helps to improve brain connection, and preserves memory and cognition.

R-lipoic acid

R-lipoic acid helps with mitochondrial function by being involved with extracting energy from foods. When R-lipoic acid is given to aging animals, their metabolic function improves, the mitochondria become healthier and there are less oxidative stress-inducing byproducts. It protects their liver, heart and brain cells from oxidative stress in their mitochondria. It is becoming known as an energy-giving supplement.

Advanced Glycation End Products (AGEs)

Advanced Glycation End Products (AGEs)

Conclusion

Sugar overconsumption and overcooking food can cause advanced glycation end products (AGEs) where lipids and proteins get cross-linked. This leads to premature loss of organ function. The mitochondria are also slowed down. This creates prematurely aging. Fortunately there are a few supplements like benfotiamine, pyridoxal 5’-phosphate, carnosine and luteolin. They protect against glycation. Mitochondria can also be protected by PPQ, taurine and R-lipoic acid. Although we cannot stop the aging process, avoiding sugar and stopping to consume overcooked food, such as barbecued meats and deep fried food is a sensible step in prevention.

With this approach and some supplements a lot can be done to slow down aging.

Incoming search terms:

Jun
24
2017

Lower Blood Sugar Prevents Diabetes

Conventional medicine has ignored for several decades that lower blood sugar prevents diabetes. After this topic has been reevaluated, it has become clear what should be normal blood sugar values. Another evaluation concentrates around the hemoglobin A1C range.

In 2016 UCLA researchers reported that 46% of adults in California are either prediabetic or have diabetes.

But 33% of young adults (age 18 to 39) also have prediabetes.

What is worse is the fact that patients with prediabetes get complications that are normally associated with diabetes. These include kidney disease, retinal problems with loss of vision, neuropathy, hardening of the arteries and cancer.

Key to preventing this from happening is to recognize that prediabetes is already the beginning of diabetes. Not only should diabetes be prevented, but prediabetes as well.

Determination of prediabetes and diabetes

The conventional test for diabetes is a fasting blood sugar.

Prediabetes

Fasting blood sugar between 100 and 125 mg/dL (5.6 to 6.9 mmol/L) was considered to be prediabetes.

Diabetes

126 mg/dL (7 mmol/L) or higher on two separate tests indicates that you have diabetes.

Glycated hemoglobin (A1C) test

This test gives an average of blood sugar over 2 to 3 months. A hemoglobin A1C test below 5.7% was considered normal, between 5.7 and 6.4 percent indicated prediabetes and at 6.5 or higher on two separate tests meant you have diabetes.

Re-evaluating normal ranges to diagnose diabetes and prediabetes

Many researchers have said that the normal values from the guidelines for blood sugar or for glycated hemoglobin A1C are too high. This is the reason why diabetic complications developed even with prediabetes.

At the 22nd Annual World Congress on Anti-Aging Medicine In Las Vegas (Dec. 10-14, 2014) Dr. Piliszek stated that the normal range for hemoglobin A1C is skewed in the medical literature. It should be: 3.8% to 4.9%. This is very important to know for diabetics and any caregiver who looks after diabetes patients. If you are satisfied with a hemoglobin A1C of 6.0 as still being “normal”, the diabetic patient has the risk of dying prematurely of a heart attack or a stroke. According to the new guidelines even a patient whose hemoglobin A1C is 5.5 has diabetes with the new guidelines and needs to be treated aggressively to prevent complications associated with diabetes. Conventional guidelines would have considered this patient to be normal.

A 1999 study made it clear that patients with a blood sugar of more than 85 mg/dL were at risk of developing diabetes complications. About 2000 patients with fasting blood sugars of more than 85 mg/dL were observed over 22 years. About 40% of them died of heart attacks or strokes!

The authors concluded that fasting blood glucose in the upper normal range was an independent risk factor of cardiovascular death.

New guidelines

Prediabetes is not a separate diagnosis, but is mild early diabetes, which is reversible with aggressive treatment. Dietary changes (cutting out sugar and refined carbs) are often effective. In some cases the addition of metformin may be required.

The new normal ranges are:

Fasting blood sugar of 85 mg/dL or less is normal.

Hemoglobin A1C of 3.8% to 4.9% is the new normal range.

These values are based on observing patients over a long period of time and seeing whether or not they develop complications from diabetes.

Uncontrolled diabetes leads to complications like damage to the lining of the arteries in all the key organs. It is the cause for the following conditions: kidney damage (nephropathy), eye damage (retinopathy), brain and nerve damage (neuropathy), as well as heart attacks and strokes (vascular damage).

Patients often end up with dialysis when kidney failure has set in. Retinopathy causes blindness and neuropathy leads to excruciating pain. Heart attacks and strokes often cause premature death. Those who ingest a high-glycemic diet have a 49% higher risk of getting lung cancer than those with a low-glycemic diet as this link from the MD Anderson Cancer Center showed.

Calorie restriction

A research group found that calorie restriction reduced fasting insulin levels in a group of overweight men and women.

Another study showed that restrained eating patterns lower fasting glucose and postprandial (after meals) glucose. It also improved insulin sensitivity in normal weight individuals.

Some practical hints about diets to treat diabetes

  1. The obvious fact is that excessive sugar intake is harmful. But in addition a drastic reduction of refined carbs is also needed, as they just turn into sugar within half an hour of ingesting them. Cut out potatoes, pasta, and bread. You may have a slice of rye bread or full grain bread occasionally. This type of diet is called a low-glycemic index diet. As indicated earlier a study from the MD Anderson Cancer Center has shown that lung cancer is more common the higher the glycemic index is and is also more common in diabetics.
  2. A Mediterranean diet has been shown to be anti-inflammatory. As diabetes and prediabetes are associated with chronic inflammation, it is useful to go on a diet that counters inflammation. The DASH diet, which was developed for high blood pressure patients, is also anti-inflammatory. Here are a few examples of snacks that may be helpful.
  3. Include fish and fish oil supplements in your diet. These contain omega-3 fatty acids, which are anti-inflammatory. Eat lots of vegetables and salads as they contain healthy bioflavonoids and antioxidant vitamins. This stabilizes the lining of your arteries.
Lower Blood Sugar Prevents Diabetes

Lower Blood Sugar Prevents Diabetes

Conclusion

The old blood sugar and hemoglobin A1C guidelines are outdated. Instead new guidelines based on actual measurements and clinical trials that showed no complications of prediabetes on the long term have replaced them.

A fasting blood sugar of 85 mg/dL or less is normal. A hemoglobin A1C of 3.8% to 4.9% is now the new normal range.

The doctor needs to be more aggressive about early nutritional intervention and possibly include metformin as well to restore insulin sensitivity. It is no longer appropriate to allow complications of diabetes like nephropathy, retinopathy or neuropathy to develop. Unfortunately food manufacturers still overload processed food with sugar. Each patient needs to be vigilant about the food he/she eats. Low glycemic nutrition is the mantra to follow. Also stick to natural, unprocessed foods instead of the highly processed foods that populate the shelves of the supermarkets.

Jun
10
2017

Dementia And Strokes From Diet Drinks

You can get dementia and strokes from diet drinks. This is what a recent study published on April 20, 2017 in the American Heart Association Journals has shown. Because of the bad press around sugary drinks more and more people have switched to diet drinks. But the authors of this study have found a correlation of consuming diet soft drinks (with artificial sweeteners), dementia and ischemic strokes.

How was the study done?

A community-based Framingham Heart Study Offspring cohort was followed for 10 years. There were two age groups they followed: mean age of 62 and mean age of 69. There were 2888 participants in the younger age group and 1484 participants in the older age group. The younger age group was followed to monitor for strokes, the older for dementia. During the observation time there were 97 cases of stroke (82 of them ischemic) and 81 cases of dementia (63 due to Alzheimer’s disease). Compared to the control group with no consumption of diet drinks, there was an increase of 296% of ischemic stroke and 289% increase of Alzheimer’s disease. This was the data based on consuming diet soft drinks for 10 years. Another control group had consumed sugar-sweetened beverages. They did not develop strokes or dementia (observation time too short). As can be seen under this link the popular press also reviewed the study.

What do we know about artificial sweeteners?

Here is a brief review of the most common sweeteners.

1. Saccharin

This sweetener’s history goes back to 1879 when the Russian chemist Constantin Fahlberg first noted experimenting with coal tar compounds that one of the end products, benzoic sulfanide, tasted sweet. In fact it was between 200 and 700 times sweeter than granulated sugar! But there were political struggles that accompanied this saccharin throughout the years. There were rumours that in rats saccharin could cause bladder cancer. The health authorities became concerned. This led to Congress passing the Pure Food and Drug Act in June of 1906, to protect the public from “adulterated or misbranded or poisonous or deleterious foods, drugs or medicines.” This was the precursor of the FDA that would examine all of the medical evidence and consider the pros and cons of sweeteners as well. President Roosevelt took saccharin for weight control to replace sugar. In 1908 Roosevelt felt he had to stop the actions of overzealous Dr. Harvey Wiley, chief of the U.S. Department of Agriculture’s chemical division,who was of the opinion that saccharin should be taken off the market. Dr. Wiley did not give up his fight and finally the FDA decided to ban saccharin in processed foods, but to continue to allow private sales of saccharin.

2. Cyclamate 

Cyclamate was detected in 1937. It was marketed first to achieve a better control of diabetes. Because of the reduction in sugar consumption it allowed diabetic patients to cut the amount of insulin required to control diabetes. Cyclamate did not have a bitter aftertaste, so it was mixed with saccharine at a ratio of 10 parts of cyclamate to 1 part of saccharin , which resulted in the creation of “Sweet ‘N Low. In 1958 the FDA gave cyclamate the GRAS designation: “generally recognized as safe”. The good fortunes of cyclamate did not last long: in 1969 damaging animal experiments showed that cyclamate/saccharin had caused chromosomal breaks in sperm of rats. Another study from 1970 showed bladder tumors in rats. Other studies showed lung, stomach and reproductive tumors in animal experiments with cyclamates/saccharin. The FDA wanted to shut down the sale of the Sweet N’ Low sweetener, but public pressure and the food processing industry forced the issue to be brought up in front of Congress. The compromise was to use a warning label: “Use of this product may be hazardous to your health. This product contains saccharin which has been determined to cause cancer in laboratory animals.” In the year 2000 and beyond a series of animal experiments and data from Denmark, Britain, Canada and the United States on humans showed there were no signs of bladder cancer from exposure to Sweet N’ Low. In 2000 Congress removed the warning labels.

3. Aspartame 

Aspartame was detected in 1965. James M. Schlatter, a chemist, was looking for anti-ulcer drugs, but noticed the intensely sweet flavor when he licked his fingers. This led to the newest sweetener by 1973. We know it by the trade names Equal, NutraSweet or Sugar Twin. As this sweetener consisting of the two amino acids phenylalanine and aspartic acid is metabolized in the body, it cannot be taken by people with phenylketonuria, with certain rare liver disorders or by pregnant women with high levels of phenylalanine in their blood, because it is not metabolized properly in those individuals. Any food made with aspartame has to carry that restriction on the label, a requirement by the FDA. In 1996 W. Olney and his associates presented research that implied that Aspartame would have caused brain tumors in rats. But later these experiments were disproven and studies from children with brain tumors showed “little biological or experimental evidence that aspartame is likely to act as a human brain carcinogen.”

4. Sucralose

Sucralose was detected in 1976 by insecticide researchers who looked for new types of insecticides. They found that chlorinated sugar worked as an insecticide. One of the researchers was astounded how sweet the chemical tasted. If you Google “Splenda and insecticide”, you have a hard time finding references regarding the history of sucralose, but 20 years ago I found a detailed description that explained how one of the chemists doing insecticide research accidentally tasted one of the research products, and it was about 600-times sweeter than table sugar. Here is one of the few references that explains that sucralose was discovered while looking for new insecticides. I have repeated the insecticide experiment myself in Hawaii where small ants are ubiquitous. Out of curiosity I took a package of Splenda from a coffee shop and sprinkled the contents in the path of ants. In the beginning the ants were reluctant to eat it, but after a short time they came and took it in. They slowed down, and finally they were all dead. A few hours later there were only shrivelled up dead ants left in the area where Splenda had been sprinkled. Proof enough for me that Splenda was developed as an insecticide and should not be consumed by humans! In the meantime Dr. Axe in the above references lists the side effects in humans: “Migraines, agitation, numbness, dizziness, diarrhea, swelling, muscle aches, stomach and intestinal cramps and bladder problems.” In the Splenda marketing scheme they decided to first introduce Splenda gradually into diabetic foods as a sweetener, then later sell it to the public at large. Don’t fall for it! It was a side product of insecticide research, and insecticides have the undesirable quality of being xenoestrogens, which block estrogen receptors in women. As a result estrogen can no longer access the body cells, including the heart. The final consequence for a woman is a higher risk for cardiovascular disease. This can cause heart attacks, strokes and cancer. In men estrogen-blocking xenoestrogens can cause breast growth and erectile dysfunction. Taken everything together Splenda seems to be too risky for its sweetness.

5. Other sweeteners

Other sweeteners researchers have not stopped looking for newer, better sweeteners. There is a number of sugar alcohols with less calories than sugar such as erythritol. Another common sugar alcohol is xylitol, used in chewing gum. The advantage is that these are natural sweet alcohols that exist in nature. Xylitol originated from birch wood and was touted to help tooth decay when you use chewing gum containing it. Karl Clauss and Harald Jensen in Frankfurt, Germany detected another sweetener, acesulfame potassium, also known by the names acesulfame K, Ace-K, or ACK in 1967 when they experimented with various chemicals. This is known under the brand name “Sweet One”, but is often disguised in processed foods together with other artificial sweeteners to mimic the taste of sugar.

6. Stevia 

Stevia has been used for over 400 years, particularly in South America. It grows like a small bushy herb with leaves that can be taken to sweeten foods.  With modern, reliable extracting procedures (Sephadex column) it is possible to separate the bitter component of stevia and discard it leaving stevia behind without any bitter aftertaste. In Japan stevia has been occupying 40% of the sweetener market. In Europe and North America there is a lot of competition with the above-mentioned sweeteners, mainly because of clever marketing techniques. In 2008 stevia received GRAS status by the FDA.

What does sugar in soft drinks do?

Sugar is an emotional topic that can get people caught up in heated discussions. The sugar industry and the sugar substitute industry have also powerful lobby groups that provide the Internet and the popular press with conflicting stories to convince you to buy their product. There is good data to show that sugary drinks cause heart attacks, strokes and diabetes. Let’s not forget the metabolism behind the various sugars and starchy foods leading to fat deposits, high triglycerides and high LDL cholesterol. Forget the emotions of severing yourself from your favorite fix and stick to a tiny amount of stevia that can replace the familiar sweet taste that you have become accustomed to from childhood onward. (At least this is what I do.) The only alternative would be to take the plunge and cut out any sweet substance altogether, which I am not prepared to do. If you can do it, by all means go ahead. For more details regarding the effects of sugar and starchy foods read the blog under this link.

Dementia And Strokes From Diet Drinks

Dementia And Strokes From Diet Drinks

Conclusion

The reason diet soft drinks have become so popular is that it had been proven in other studies in the past that sugary drinks could cause heart attacks and strokes. Now a new study revealed that diet soft drink consumption is associated with dementia and strokes. These drinks contained saccharin, cyclamate, aspartame or sucralose. They did not contain stevia, a natural sweetener because it is a natural, not a patented sweetener. It seems that companies’ profits are higher with chemical, patented sweeteners.

Looking back in time it seems perfectly legal that a company produces a chemical, patents it and sneaks it through the FDA channels for approval. The company then markets diet soft drinks that later are shown to produce dementia and ischemic strokes in much larger studies than were originally used to get FDA approval.

I have noticed that companies are now quietly introducing stevia, a natural sweetener to avoid potential legal problems down the road. Perhaps it is time to follow the Japanese lead where stevia is already occupying 40% of the sweetener market.

Incoming search terms:

Jun
03
2017

Fish, The Good And The Bad

I am going to review fish, the good and the bad. Fish can be very nutritious, because it contains a lot of healthy omega-3 fatty acids. But because of pollution it also has various degrees of mercury, PBC’s and other impurities.

I will discuss the good about fish oil first. Later we will learn that wild salmon is one of the best fish to eat, while we should avoid tuna due to mercury pollution.

The good about fish

Omega-3 fatty acids, also called marine oil, is an essential fatty acid. It balances omega-6 fatty acids of which we eat too much. Processed foods are full of omega-6 fatty acids, because they keep a long time on the grocery shelves without turning rancid. But when the omega-6 to omega-3 ratio is getting higher than 3:1 we are experiencing a problem. The body stimulates the arachidonic acid pathway, a metabolic pathway that produces inflammatory substances and arthritis. An old home remedy for arthritis is to use fish oil (cod liver oil). It changes the omega-6 to omega-3 ratio back to more normal levels, which can help arthritis patients. Early stage of arthritis can even heal.

Many processed foods contain only omega-6 fatty acids, because this is the cheapest way to produce them (they are based on vegetable oils). Instead of this you want to eat healthy fats like omega-3 fatty acids contained in nuts and fish. You can also add molecularly distilled, high potency omega-3 fatty acids (purified fish oil) as a supplement to help restore the balance between omega-6 and omega-3 in the food you eat. Avoid omega-6 fatty acids that are derived from corn oil, safflower oil, grape seed oil, soybean oil, cottonseed oil, canola oil and peanut oil.

Compare the metabolism of omega-6 fatty acids with that of omega-3 fatty acids.

The linoleic acid of omega-6 fatty acids gets metabolized into arachidonic acid, which causes pro-inflammatory mediators, PGE2 and LTB4 as shown in the metabolism link. On the other hand with omega-3 fatty acids alpha-linolenic acid (ALA) is metabolized into EPA, DHA and the anti-inflammatory mediators PGE3 and LTB5.

It is easily understandable why a surplus of omega-6 fatty acids from processed foods will disbalance the omega-6 to omega-3 ratio. This ratio should be 1:1 to 3:1, but many Americans’ omega-6 to omega-3 ratio is 6:1 to 18:1. Omega-6-fatty acids cause arthritis, heart disease and strokes. Be particularly careful avoiding soybean oil. It has become the most popular oil in the last few decades to foul up the omega-6 to omega-3 ratio. We consume it through processed foods and cooking oils.

Omega-3 supplements

When it comes to balancing omega-3 and omega-6 fatty acids in your diet, be aware that nutritional balancing can help you restore the ideal omega-6 to omega-3 ratio of 1:1 to 3:1. An easy way is to cut out processed foods as much as possible. Supplement with molecularly distilled fish oil capsules to add more omega-3 fatty acids into your food intake. Here is an example of rheumatoid arthritis patients that received omega-3 supplements. After 24 weeks their joint swelling and tenderness decreased significantly.

Rebalancing the omega-6 to omega-3 ratio was able to treat depression as this research showed. This makes you wonder how much depression may be caused by overconsumption of processed food.

Dr. Blatman suggested the following doses of omega-3 supplementation for various purposes:

  • 1 gram/day as supplementation for healthy adults with a good diet
  • 1-3 grams/day for people with cardiovascular disease
  • 5-10 grams/day for patients with an autoimmune disease, with chronic pain or with neuropsychiatric conditions

He mentioned that these doses are empirical, but in his experience this is what really works. Due to quality differences he suggested that you buy fish oil capsules in a health food store. Stay away from discount stores (the quality is the worst) and drug stores.

Other healthy oils are olive oil and coconut oil. They are also useful for cooking.

The bad about fish

1. Mercury and other pollutant

Pollution of the air, soil and rivers is causing accumulation of mercury and other heavy metals in ocean water.

This affects fish that live in the ocean. There is a pecking order of predators with the larger fish feeding on the smaller fish. The bigger the predator fish, the more mercury and other pollutants they accumulate. According to this link the safest seafood is wild salmon, pollock and oysters.

Tuna is too high in mercury, so is swordfish, and shark is even worse. I only consume fish from freshwater lakes or rivers, as well as salmon, oysters and shrimp. This way I get the lowest exposure to mercury. Why is mercury bad for you? It is a neurotoxin. It can harm your brain, heart, kidneys, lungs and the immune system. Specific symptoms can include loss of peripheral vision and lack of coordination with balancing problems. There may be impairment of speech and hearing. The key is to avoid mercury exposure.

2. Rancidity of fish oil

Rancid fish oil contains free radicals that attack the lining of the arteries. There would be no point in taking fish oil, if it is rancid and destroyed what you want to protect. When fish oil is stored, it can interact with oxygen and form lipid peroxides, which are free radicals. The Council for Responsible Nutrition’s quality standards monitors rancidity in fish oil. Get fish oil that meets or exceeds the Council’s standards. If you refrigerate fish oil, it stays fresh longer.

Managing mercury pollution

  1. The first line of defense is to stick to the smaller fish. They are they prey of the large predator fish. The following fish/mussels belong into the low mercury group (alphabetical order): anchovies, catfish, clam, crab, crawfish, flounder, haddock, herring, mackerel, mullet, oyster, perch, pollock, salmon, sardines, scallops, shrimp, sole, squid, trout and whitefish.
  2. You may want to supplement your omega-3 fatty acid intake by fish oil capsules. It is important that you choose the more expensive higher potency products. A molecular distillation process that removes mercury, PCB and other heavy metals creates these higher potency products. This way you only get the enriched omega-3 fatty acids in pure form. EPA and DHA in one capsule should be in the 900 mg to 1000 mg range, not less. I take 2 capsules twice per day as a daily supplement. This helps you as indicated above to balance the omega-6 to omega-3 ratio, which cuts down any inflammatory process in you.

More good news about omega-3 fatty acids

Omega-3 fatty acids have multiple anti-inflammatory effects. This helps for treating arthritis, osteoporosis, preventing heart attacks and brain shrinkage. Even depression can be influenced positively when krill oil and fish oil are both taken at the same time. It is best to think about krill oil and omega-3 fatty acids (fish oil) as complementary marine oils that have multiple beneficial effects on the body.

Studies have shown that arthritis and osteoarthritis are helped by krill oil, but also by fish oil. Similarly, heart attacks and strokes are prevented with both krill oil and omega-3 fatty acids. It appears that both oils reduce inflammation in the arteries that is associated with high blood pressure, diabetes, obesity and the metabolic syndrome in obese people. C-reactive protein measuring inflammation was reduced by krill oil up to 30% compared to placebo within 30 days. Patients with arthritis had 20% and more reduction in stiffness and pain.

Krill oil is well absorbed into the brain and can prevent age-related brain shrinkage, preserve cognitive function and memory, prevent dementia and also possibly depression.

Other health conditions improve on both krill oil and omega-3 fatty acids like osteoporosis (in combination with vitamin K2, vitamin D3 and calcium), a weak immune system, diabetes, high triglyceride levels and cholesterol problems. Both marine oils prevent LDL cholesterol from being oxidized, which helps to prevent atheroma formation and hardening of the arteries. This prevents heart attacks and strokes.

Fish, The Good And The Bad

Fish, The Good And The Bad

Conclusion

In the past cod liver oil was given to children to prevent rickets. In the 1960’s Dale Alexander wrote a book called “Arthritis and Common Sense”. Since then medicine has been revolutionized in the late 1990’s by the idea that inflammation in the body is responsible for high blood pressure, diabetes, heart attacks, strokes, arthritis and even Alzheimer’s disease. It is in this area that omega-3 fatty acids are an important supplement as fish oil capsules and krill oil capsules. These supplements can be bought molecularly distilled to be free of mercury and other pollutants. The anti-inflammatory effect of omega-3 fatty acids is a powerful preventative for all these diseases mentioned. It no longer is a question, whether these supplements work. It has become a fact backed up by large studies including mortality statistics. Even the FDA has included seafood into their food recommendations. The key is to rebalance your omega-6 to omega-3 ratio and incorporate marine oils in your diet. Your body will thank you for it with a longer, healthier life.