Search Results for: vitamin D

Feb
24
2018

What Causes Premature Aging?

Some people look 10 years older than their stated age, and we often wonder: what causes premature aging? Accelerated or premature aging can have a multitude of underlying causes. I will list a few here:

1. Weakening hormones

Men go through andropause at around the age of 60 to 65 and women go through menopause around the age of 55 to 65. In both males and females it is the sex hormones that are missing around that age. If hormones replacement follows fairly quickly with bioidentical hormones, this will not affect the visual appearance that much. In contrast, if bioidentical hormones are not the therapeutic choice for  hormone replacement, but synthetic ones, the hormones are not in balance, as synthetic hormones do not restore the hormonal balance. Nothing is gained, as the person will still age prematurely.

Synthetic versus bioidentical hormone replacement

In addition the synthetic hormones will cause heart attacks, strokes, clots, and cancer. Prescriptions for synthetic hormones are often the cause that the aging patient population gets these serious complications. Frequently physicians insist on using synthetic hormones from a “reputable” drug company to replace missing hormones. The reason this does not work is that a male has testosterone receptors. They need to be stimulated by bioidentical testosterone to restore all of his missing functions. Also, the same is true in menopausal females who need stimulation of their estrogen receptors and progesterone receptors. Consequently, only bioidentical hormones will return a postmenopausal woman back to normal. There is a perfect fit between the bioidentical replacement hormones and her hormone receptors. Using synthetic hormones is like trying to unlock a door with a key that does not have a perfect fit: you damage the lock!

2. Missing human growth hormone (HGH) and thyroid hormones

These hormones have a special place in aging.

Human growth hormone deficiency

First, HGH production is running out in many people at age 60. A person with HGH deficiency will have lower muscle mass and strength. Other symptoms are dry and thin skin, particularly at the back of the hands. Men are balding, and they loose interest in sex. There are difficulties concentrating and they may have “senior moments”, which are memory lapses. Often they are prone to depression and anxiety. A blood test will frequently show elevated triglycerides. A blood test (IGF-1) and a urine test exist which make it possible to look for HGH metabolites to assess whether a 40, 50 or 60 year-old person is producing enough HGH. Many may need replacement of HGH. This is administered by injection through a tiny needle into the skin, similar to a diabetic injecting insulin. This will bring back what was missing due to HGH deficiency.

Thyroid hormone deficiency

Thyroid hormones (T3 and T4) are other important factors that could make you look older prematurely. Your hair is getting thinner; your skin turns dry and pale. The nails may be getting brittle. When the outside half of the eyebrows is very thin or missing, this can be a sign of hypothyroidism. In a similar vein the skin in the face may be puffed up due to swelling of the layers under the skin (myxedema). It is important to diagnose hypothyroidism, which is common in the aging population. The physician needs to order a blood tests (TSH, T3 and T4). If TSH is above the upper limit, your physician needs to replace both T3 and T4 by tablets (I prefer Armour as the T3 and T4 is balanced).

3. Smoking

The lining of the airways absorb cigarette smoke. The chemicals circulate around in the blood and lead to aging of the skin. Chronic cigarette smoke exposure also melts away the subcutaneous tissue. The end result is a haggard look. The natural glow disappears from the skin and because of carbon monoxide binding to hemoglobin the skin color looks more greyish. In addition the blood vessels are narrowing or clogging. This means that the body cannot absorb nutrients as well, and cells are starving. There is only one remedy for this: quit smoking!

4. Overexposure to ultraviolet light

The radiation of UV light can penetrate deep into and under the skin. This makes the subcutaneous fat melt away. The largest UV exposure is in the facial area. As a result we see aging there. The end result is a sagging appearance of the face. This link has an image of a woman before and after a non-surgical facelift with stem cells and fatty tissue: Stem Cell Treatments That Are Currently Available – Medical Articles by Dr. Ray

In a surgical procedure the physician harvests mesenchymal stem cells from fatty tissue by liposuction. A cell separator separates the mesenchymal stem cells, the connective tissue and the fat cells. The connective tissue is discarded. Mesenchymal stem cells and fat cells are mixed and injected into the thinned subcutaneous fatty tissue until the person’s younger facial contour is back to normal. Typically this will last for 10 years or more.

5. Drugs and alcohol abuse

Both can lead to malnutrition with weight loss and loss of subcutaneous fatty tissue, which causes sagging breasts in women. In men “beer tits” are common. The reason for this is estrogen accumulation, as alcohol interferes with the elimination of estrogen in the liver. Alcohol is a general cell poison. It causes all of the cells to age prematurely. The more alcohol you drink, the faster you age. The skin develops wrinkles, loss of elasticity and collagen, redness and puffiness. In other words chronic alcohol abuse ages you prematurely. The only remedy for this is to quit drinking. Some of your skin vitality may come back. Our body has an amazing capability to heal itself!

6. Medical illnesses

Many medical illnesses like diabetes, mental illness (depression and schizophrenia), multiple sclerosis, inflammatory bowel disease; cancer and others make you look a lot older very fast.

I will briefly explain the reasons for this.

  • Diabetes

With diabetes type 2 the pancreas releases too much insulin after a meal with starches and sugar; think about a sweet muffin or a toast with jam. The extra insulin causes inflammation. This stimulates enzymes that break down elastin and collagen, leading to wrinkles and sagging skin.

  • Mental illness like depression and schizophrenia

We know from studies that depression leads to shortening of telomeres. This in turn causes cell death in the most rapidly dividing cells like in the skin and hair follicles. The end result is prematurely aged hair and skin. Schizophrenia also leads to premature shortening of the telomeres, which causes premature aging, mitochondrial dysfunction, inflammation and oxidative stress. The end result is that the person looks older than what their chronological age is.

  • Multiple sclerosis

It is sometimes difficult to discern in patients with MS what is normal aging and what is aging from the disease. This link gives some background on this. Many MS patients are anxious, and anxiety and stress by itself also leads to premature aging.

  • Inflammatory bowel disease

The chronic inflammation of either ulcerative colitis or Crohn’s disease can lead to premature aging. High doses of vitamin D3 and molecularly distilled fish oil can be useful to help treat the inflammation. Probiotics are also important to restore the bowel flora.

  • Cancer

Cancer leads to cachexia (excessive weight loss). There is also excessive inflammation, which leads to accelerated aging. The inflammation causes increased oxidative stress. This leads to tissue damage and DNA damage, which makes all cells more vulnerable to develop other cancers. Oxidative stress can substantially accelerate telomere shortening. As a result skin can become saggy, wrinkles develop and the person looks prematurely aged.

7. A chronic lack of physical activity

People who never exercise tend to get overweight and eventually obese. This leads to premature aging. Exercise would elongate telomeres, but inactivity shortens them. Obesity leads to increased oxidative stress and to DNA damage. Obesity also shortens telomeres. All of this leads to premature aging.

What Causes Premature Aging?

What Causes Premature Aging?

Conclusion

These are only a few examples of causes of accelerated aging. The key is to stick to a healthy, balanced diet (like the Mediterranean diet) and exercise regularly. Stop smoking (if you do), don’t take street drugs, and make sure you get enough sleep. Getting enough sleep helps your hormones regenerate overnight. The sympathetic overdrive from your daily activities is counterbalanced by the parasympathetic activities during sleep that causes relaxation. For hormone replacement you may have to see an anti-aging physician, a naturopath or integrative medicine physician. This may be your only chance to address any hormonal deficiencies. Conventional medicine does a very poor job of HRT (hormone replacement therapy) with synthetic hormones. Conventional practitioners want to treat you with synthetic hormones that will make you sick. Hormones for replacement have to be bioidentical! This way you will live 10 to 15 years longer, look younger and stay healthy.

Feb
18
2018

Causes Of Back Pain And Their Treatment

There are many possible causes of back pain and their treatment is described in this blog. I have listed the 10 most common causes of back pain below. I also added brief therapeutic suggestions.

Facet joint disease (lower back strain)

When there is a misalignment of the facet joints, the joint capsules of these small joints are pulled, which can cause severe back pain. Chiropractic or physiotherapy treatments initially followed by active exercises will help (facet joint pain).

Degenerative disc and facet joint disease

Degenerative changes of the disc material between vertebral bodies and osteoarthritis of the facet joints can cause back pain. This is due to irritation of the nerve roots. Anti-inflammatory medication and physiotherapy treatments often help; swimming will be beneficial as well. End stage intractable disease, if confined to one or two levels, may respond to fusion surgery by a spinal surgeon. While you research the surgical option, I suggest you investigate about the possibility of stem cell therapy with PRP (platelet rich plasma). This is less invasive and will likely heal better than conventional surgery.

Spondyloarthropathies

This is a family of chronic inflammatory joint diseases of the spine . The physician treats the underlying disease and uses anti-inflammatories to control inflammation. Most of all, a person with this condition needs a referral to a rheumatologist for more specific therapy.

Osteoporosis

Osteoporosis is a bone condition that can lead to compression fractures of the spine. These in turn can irritate one of the nerve roots to lea to radiating pain into one or both legs. The physician will treat the underlying hormone disbalance, if present. Regular walking and swimming are used to remobilize. Avoid alcohol, caffeine and stop smoking. Supplements like calcium, bisphosphonates, vitamin D in higher doses and vitamin K2 can help re-calcify the bone.

Scoliosis

Scoliosis is often congenital. This spinal curvature leads to back pain and hurts more the more the spine is curved. Treatment: bracing during growth spurts; good posture; strengthening exercises; in severe cases corrective surgery by a spinal surgeon through the use of Harrington rods.

Spinal stenosis

Spinal stenosis is often the end condition of severe degenerative arthritis of the spine. It is more common in the older generation. As this link explains, there is a narrowing of the channel through which the spinal cord travels. In the past decompression surgery for severe cases was the only means to free spinal cord and nerve roots. In the last few years stem cell therapy is a new addition as an alternative to orthopedic surgery. The advantage of stem cell therapy is that there is no scarring following the procedure and the stem cells function like a biological knife from inside.

 Posttraumatic fibromyalgia

Some people develop lower back pain following traumatic injuries. Instead of resolving their muscle sprain, they end up with chronic pain. Often low dose antidepressants and cognitive therapy will help. Mild physical exercises may help to rehabilitate the patient and return to normal muscle mobility. Unconventional therapy like prolotherapy, dry-needling and low-dose laser therapy (Dr. Weber) may be useful.

Disc herniation with or without sciatica

With disc herniation the back pain is intense, which often prompts the orthopedic surgeon to do an early discectomy (back surgery). But long term studies have shown that only in 3% of all acute back pain cases surgery is necessary; many cases heal on their own. In this case the new regenerative medicine approach of stem cell therapy with PRP will give superb clinical results. Stem cells will rebuild the disc and also take care of any arthritis in the small joint along the spine.

Spondylolisthesis and other congenital malformations

There are 4 grades of slipped vertebral body diseases (spondylolisthesis), where grade IV is the most severe case. Grade I to IIIA do not need surgery, stage IIIB and IV need fusion with instrumentation by a spinal surgeon.

Bone metastases

In stage 4 of many cancers metastases travel through the whole body including the skeleton. The underlying cancer needs treatment, often chemotherapy is required. Unfortunately cancers with bone metastases have a very poor prognosis. Here is a link how to manage symptoms of bone metastases.

Causes Of Back Pain And Their Treatment

Causes Of Back Pain And Their Treatment

Conclusion

I have listed the ten most common ones of back pain. For muscle spasms, simple physiotherapy or chiropractic treatment are often very helpful. Early degenerative changes in joints and discs will often respond to anti-inflammatory medication. But anti inflammatory drugs can be hard on your liver and your kidneys. If your back pain is getting more chronic, your doctor may want to arrange for an MRI scan of the area that causes pain. If this shows degenerative change in the discs and facet joints it is time to contact a regenerative medicine clinic. They specialize in stem cell and platelet rich plasma (PRP) treatments. This may be what you need to restore your back to normal. Conventional surgical methods are often the choice, but they are not always successful. Surgery can leave scarring behind, which by itself can give you chronic back pain.

Jan
27
2018

Bacterial Toxins Threatening The Brain

Dr. Robert G. Silverman gave a talk about bacterial toxins threatening the brain. He spoke at the 25th Annual World Congress on Anti-Aging Medicine in Las Vegas on Dec. 15, 2017. First of all, he pointed out how changes in the gut flora can affect the integrity of the gut wall. In addition this can eventually this lead to a leaky gut syndrome. But it does not end here. As a result the toxins enter the blood stream and affect the blood/brain barrier. Consequently in the end various neurological diseases can develop from this.

Here I am giving a brief overview of the talk by Dr. Silverman. But he was not the only one speaking to this subject. Several other speakers also brought up this subject throughout the conference. They stressed the importance of rectifying any gut dysbiosis to stop leaky gut syndrome and a leaking blood/brain barrier.

Leaky gut syndrome

When the gut flora changes there are often enteropathogenic E. coli strains, Shigella and Salmonella that invade the lining of the gut causing leaky gut syndrome. When toxins enter the blood stream, the body is starting to form antibodies against various proteins. Antibodies are acting against various targets: bacterial cytotoxins, cytoskeletal proteins, tight junction proteins and food antigens. Lipopolysaccharides (LPS) from toxins of gram-negative gut bacteria can also leak into the blood. This affects key organs like the liver, the heart, lungs, the joints, the immune system and the thyroid. When this process has gone on for some time, the blood/brain barrier is breaking down next. The intestinal inflammation causes the release of inflammatory cytokines that circulate in the blood stream. The cytokines cross the blood/brain barrier and activate the support cells in the brain, called microglia. This in turn causes inflammatory degenerative changes in the brain.

Blood/brain barrier

LPS circulating in the blood from gut bacteria endotoxins increase the permeability of the blood/brain barrier. This is bad news for the brain as it becomes vulnerable to attacks from the antibodies mentioned and from food particles. Dr. Silverman cited papers showing that circulating antibodies that cause inflammation in the brain can be the starting point for early Parkinson’s disease. Autoimmune antibodies can cause even depression.

Intestinal permeability can be assessed by various antibody constellations. For instance IgA antibodies point to an ongoing issue/early leaky gut syndrome. IgM antibodies indicate early onset and IgG antibodies chronic issues of leaky gut syndrome. If you add various antigens like LPS, zonulin and actomyosin you can pinpoint which structure of the gut wall is affected by leaky gut syndrome, and the antibody type adds more information about the timing of the onset of leaky gut syndrome.

Bacterial toxins threatening the brain when BBB damaged

As I already mentioned the blood/brain barrier (BBB) is often simultaneously affected when there has been leaky gut syndrome. There may be a delay, but eventually the BBB breaks down also, and the brain will be in jeopardy. Dr. Silverman gave an example of how depression can develop as result of a breakdown of the BBB. Chronic intestinal inflammation can suppress the sensitive hippocampus cells from regenerating. Physicians call that impairment of hippocampal neurogenesis. Inflammatory cytokines damage the neuronal cell progenitors. As a result patients with inflammatory bowel disease can have mood disorders and cognitive impairment. Sophisticated BBB blood tests can pinpoint whether the BBB is intact or establish whether there is impairment. The important thing to remember: there is a gut brain connection.

Fixing the gut to stop bacterial toxins threatening the brain

In order to fix the BBB, you must first concentrate on fixing leaky gut syndrome.

  • Avoid gluten, as gluten is causing inflammation of the gut wall.
  • Start taking probiotics that contain more than 30 Billion lactobacillus plantarum, lactobacillus acidophilus and Bifidobacterium lactis per daily dose.
  • Do a heavy metal detox involving phytonutrients, hops, turmeric, Andrographis, zinc, polyphenols, omega-3 fatty acids, and watercress plant extract. Andrographis, also known as the “King of Bitters”, is an Ayurvedic medicine used to promote digestion and stimulate appetite.

Nutrients to fix the blood/brain barrier

Dr. Silverman uses the following nutrients to repair the blood brain barrier.

  • Acetyl L-Carnitine: this helps to protect the mitochondria from oxidative damage
  • Berberine: reduces inflammation in brain injuries
  • Alpha-lipoic acid: preserves the integrity of the BBB by controlling oxidative stress
  • Curcumin: decreases brain swelling, preserves the BBB and increases tight junction protein in brain cells
  • Vitamin D3 (5000 IU or more): protects the BBB by various mechanisms
  • Omega-3 fatty acids: they increase cell membrane fluidity and protect the BBB
  • Resveratrol: reduces inflammation and restores the BBB

Neuroplasticity

In order for the brain to adapt to changes, it must be flexible, which means on a cellular level that nerve cells form new synapses, neurological pathways etc. This is what neuroplasticity means. Here are the factors that Dr. Silverman listed as facilitating neuroplasticity.

  • Regular exercise
  • DHA from fish oil capsule supplements
  • Turmeric
  • Whole coffee extract
  • Alpha-lipoic acid
  • Lactobacillus brevis and Bifidobacterium longum
  • Bifidobacterium animalis Lactis 420 (B420)
  • Probiotics: they feed the healthy gut bacteria (e.g. apple cider vinegar)
  • Elevate magnesium in the brain through L-threonate
Bacterial Toxins Threatening The Brain

Bacterial Toxins Threatening The Brain

Conclusion

In the last few years it has become abundantly clear that leaky gut syndrome is not an isolated matter. It is invariably connected to a breakdown of the blood/brain barrier (BBB). Leaky gut syndrome alone is bad enough as it can lead to a number of autoimmune diseases, like Hashimoto thyroiditis and others. But when the BBB is affected, antibodies can now affect nerve cells, can cause Parkinson’s disease, depression, and even Alzheimer’s disease. There is no reliable database for what can happen to the brain when the BBB breaks down.

Because of these connections it is important to sanitize the gut, re-establish a healthy gut flora and overcome leaky gut syndrome. This will at the same time repair the broken down BBB. It will also prevent further possible damage to the brain in the future. Your gut health is your brain health. Take care of both your gut as well as your brain!

Jan
20
2018

Lower Cholesterol

When your cholesterol is high, what can you do to lower cholesterol? First, there is the bad cholesterol, called LDL cholesterol that should not be too high. Furthermore, there is the good cholesterol, called HDL cholesterol that you want to be to higher to protect you from hardening of the arteries. LDL cholesterol finds its way into plaques of arteries, and later calcification occurs. HDL cholesterol does the opposite; it dissolves LDL cholesterol and brings it to the liver.

Food contributes only to a small portion to the increases of your LDL cholesterol (the bad cholesterol) in the blood. The minor part of the body’s cholesterol stems directly the refined carbs and trans fats from your diet. Here are a number of steps that will protect your heart from LDL cholesterol.

1. Cut out red meat

Cutting out red meat (like beef, pork and sausages) to an absolute minimum, for instance once per week or less is important. The reason is that these meats have more cholesterol in them and also more saturated fats than any other foods. Compare that to poultry, fish and vegetables like beans, which are healthy food sources.

2. Eliminate trans fats

We need to eliminate trans fats as they are causing heart attacks. There is an important difference between ruminant trans fats and artificial trans fats. Ruminant trans fats have been part of the human diet for millennia like milk fat and fat from cows that are on pasture and lamb. Milk products for instance contain fat with 2-5% natural trans fats. 3-9 % of the fat in beef and lamb consists of natural trans fats. Studies have shown that the body is able to handle these natural trans fats and heart attacks are not more frequent in people eating moderate amounts of these products including butter from cows that graze on pasture.

Artificial trans fats

Quite the opposite is true for artificial trans fats in margarine that comes from vegetable oil. Avoid bakery items like sweet pieces or muffins and other products that contain hydrogenated oils. Read labels! Use olive oil or coconut oil, but avoid vegetable oils like corn oil, safflower oil or grape seed oil to get away from trans fats and unstable oils that turn rancid. Rancid oils contain free radicals that oxidize LDL cholesterol and attack the lining of your arteries.

3. Cut out sugar and starchy foods

You need to cut out sugar and starchy foods because these will raise your LDL cholesterol and triglycerides, which also leads to hardening of your arteries. This is an important observation. Starchy foods are broken down by  pancreatic juices into sugar, which enters your blood stream, causing an outpouring of insulin from the pancreas. When the short-term storage of sugar as glycogen is exhausted in muscle and liver tissue, the liver has to process any surplus of sugar that is still there. The end results are triglycerides and LDL cholesterol. Unfortunately the protective HDL cholesterol does not reach higher levels, when the LDL cholesterol is increased. A persistent diet of high-refined carbs will increase the risk for heart attacks and strokes. It follows from this that we are all better off cutting out sugar and starchy foods from our food intake.

4. Increase your soluble fiber intake

Increase your soluble fiber intake by eating vegetables, oats and oat bran, lentils, fruits and beans. Why does this decrease LDL cholesterol? The liver tries to eliminate too much cholesterol by binding it to bile salts and excreting it into your small bowel. But the last part of the small bowel reabsorbs some of these bile salts , and from there they return to the liver. This is called the enterohepatic pathway of bile salts. Soluble fiber intake binds those bile salts and prevents re-absorption in the enterohepatic pathway, eliminating cholesterol safely in stool. Soluble fiber from psyllium, pectin, beta-glucans and others have been shown in clinical trials to reduce LDL cholesterol by binding bile salts in the gut (interrupting the enterohepatic pathway).

Plant sterols and fiber supplements

Plant sterols (usually sold as sterol esters) are recognized by the FDA as reducing the risk of coronary heart disease, if taken in high enough amounts (2.4 grams of sterol esters per day). There are other useful supplements like artichoke extract, pomegranate, soy protein, Indian gooseberry (Amla), garlic and pantethine (vitamin B5) that are beneficial in terms of prevention of heart attacks and strokes. It would be too lengthy to get into more details here.

5. Take a whey protein supplement

There are two major milk proteins, whey and casein. Only whey protein binds to total and LDL cholesterol, lowering both. It is available in health food stores. Follow the package insert of the whey product for dosing.

6. Increase your omega-3 fatty acid intake

Omega-3 fats are healthy fats naturally present in fish oils and nuts. They increase the amount of circulating HDL cholesterol, which binds the bad LDL cholesterol. Go ahead and eat salmon, herring and mackerel as well as walnuts, ground flaxseeds and almonds. You can also take molecularly distilled (or pharmaceutically pure) EPA/DHA supplements. This pure form of fish oil is free of mercury and other heavy metals. EPA stands for eicosapentaenoic acid or omega-3 fatty acid. DHA is the acronym for docosahexaenoic acid, an important supplement for the brain. Tests have shown that fish oil supplements at a dosage of 3.35 grams per day of EPA plus DHA reduce triglycerides by up to 40%, equally to Lipitor or even more effective, but without the statin side effects. The end result is that your total cholesterol/HDL ratio decreases. This reduces the risk for heart attacks and strokes.

7. Eat foods with anthocyanin

In a 24-week study with diabetic people HDL levels rose by 19% when food was eaten that was rich in anthocyanin. This consisted of eggplant, purple corn, red cabbage, blueberries and blackberries. The advantage of raising the HDL cholesterol level is that the total cholesterol to HDL ratio decreases, which lowers the risk for heart attacks and strokes.

8. Exercising regularly

Exercising will increase your HDL cholesterol, which again decreases the ratio of total cholesterol to HDL cholesterol. This number should be between 1 and 3.5, the lower, the better.

9. Take a supplement called Ubiquinol, or Co-Q-10

Adults above the age of 60 need 400 mg once daily, younger people need between 200 mg and 300 mg daily. Co-Q-10 prevents oxidation of LDL cholesterol, which would aggressively attack the arterial walls causing hardening of the arteries. What causes oxidation of cholesterol? The answer is clear: fried foods like french fries or deep fried chicken will lead to oxidation; other culprits are margarine, commercially baked goods and cigarette smoking.

10. Calcium and vitamin D3

Recently a study on postmenopausal and overweight or obese women found that supplements of calcium combined with vitamin D3 lowered cholesterol.

11. Polyphenols

Flavonoids are the largest group among the polyphenols  in such common foods as vegetables, fruits, tea, coffee, chocolate and wine. Over 130 studies on humans have shown improvement of the lining of the arteries (endothelial functioning) and lowering of blood pressure. Polyphenol consumption has a connection  to a lower risk of mortality from heart attacks. Eat a Mediterranean type diet or a DASH diet, and you will automatically get enough polyphenols with your food. However, resveratrol, the powerful red wine polyphenol, warrants a separate daily supplementation as it prevents LDL oxidation in humans (Ref.1). Take about 250 mg of resveratrol daily.

12. Niacin/ nicotinic acid

This supplement comes as “flush-free niacin” and also as extended release niacin; it can raise the beneficial HDL cholesterol by 30 to 35% when patients take higher doses of 2.25 grams per day. In a metaanalysis of 7 studies researchers found a significant reduction of heart attacks and transient ischemic attacks (precursor syndrome before developing a stroke). Niacin can change the small particle LDL into a large particle size LDL, which is less dangerous. Niacin also reduces oxidation of LDL, which stops the atherosclerotic process. For a healthy person 500 mg per day of flush-free niacin is adequate.

13. Curcumin

This is a powerful heart and brain protector combining three different mechanisms in one; it is reducing oxidative stress, is an anti-inflammatory and counters the process that threatens to destroy the lining of the arteries. One study on healthy volunteers showed reduction of 33% in lipid oxidation, a 12% reduction of total cholesterol and an increase of 29% of the protective HDL cholesterol when patients took 500 mg of curcumin for only 7 days (Ref.1). This is the daily dose I would recommend for prevention of heart attacks and strokes.

14. Vitamin E (tocopherols)

This fat soluble vitamin is an antioxidant and in the past knew about its use as being heart supportive. Strangely enough some conservative physicians bad-mouthed this vitamin. In the meantime health practitioners have returned to using the vitamin. It turns out that there are 8 different types of tocopherols, with the alpha tocopherol being the best-known, but you also want to be sure that you are getting gamma tocopherol with your balanced vitamin E supplement every day. It remains the one that is a powerful anti-inflammatory. Simply ask staff at your health food store for a vitamin E supplement with gamma tocopherol in it. Take 400 IU per day (of the mix).

Lower Cholesterol

Lower Cholesterol

Conclusion

There is a lot you can do to control your cholesterol level by changing your diet, shedding some pounds, exercising and quitting smoking. All this will contribute to lower cholesterol. This will have a beneficial, long-term effect regarding prevention of heart attacks and strokes. In addition there are specific supplements and vitamins, which prevent heart attacks and strokes as well. With these measures the majority of people with high LDL cholesterol can change their cholesterol levels without taking statins. Statins have serious side effects like Alzheimer’s disease and a painful muscle condition called rhabdomyolysis. None of the other measures described here have any such side effect. Even if you chose to only concentrate on a few of these 14 points to lower cholesterol there will be significant improvements in your LDL and HDL cholesterol levels, when you ask your doctor to order these blood tests.

More info: https://www.askdrray.com/statins-can-hurt-the-consumer/

References

Ref. 1: Life Extension: Disease Prevention and Treatment, Fifth edition. 130 Evidence-Based Protocols to Combat the Diseases of Aging. © 2013

 

Incoming search terms:

Nov
05
2017

What Limits Our Life Expectancy?

Most anti-aging experts say that there are a number of factors that in combination lead to what limits our life expectancy. Right now the average life expectancy is about 80 years. With a bit of effort it can be expanded until 115 to 120 years. I like to discuss what these limits are.

1.Diseases that limit our life expectancy

 

  • Congenital hypertriglyceridemia and familial hypercholesterolemia

We all know that certain diseases can shorten a person’s life. Some families have a history of congenital hypertriglyceridemia. There is a history of all the male family members having heart attacks at a young age and dying prematurely. In other families it is the LDL cholesterol that is congenitally elevated, causing premature heart attacks.

  • Obesity

Obese people come down with diseases that shorten their lives. There is diabetes that is more common with its own problems of nephropathy, cardiovascular disease and blindness. But obese people also can get severe osteoarthritis in hips and knees that often lead to total hip and knee replacements. With complications people will die prematurely.

  • Liver cirrhosis

A number of conditions lead to cirrhosis of the liver: chronic alcohol abuse, viral hepatitis (particularly hepatitis B and C) and non-alcoholic fatty liver disease. There are also a few less common causes.

  • Kidney failure

There are several clinical conditions that can lead to kidney failure, like diabetes, high blood pressure, polycystic kidney disease, but also abuse of non-steroidal anti-inflammatory drugs (NSAID’s) for joint disease.

Unfortunately kidney disease like this often shortens a person’s life.

  • Alzheimer’s disease and Parkinson’s disease

When a person is diagnosed with Alzheimer’s disease the life expectancy will only be about 10 years on average.

Parkinson’s disease treats the patient somewhat better with a life expectancy of between 10 to 20 years after diagnosis.

But any neurological disease seems to significantly shorten the life of a of a person. This list is not complete, but these diseases are common. All of them will shorten a person’s life expectancy. The key is prevention to avoid the onset of these diseases.

2. Mitochondria and the biology of aging

The small organelles in each cell, the mitochondria are the power packs of our cells. Mitochondria can be preserved through exercise, CoQ10 supplementation and caloric restriction. This overcomes a lack of energy and strengthens the muscles of the body, which includes the heart. As Dr. Whitaker has shown in this link, it is simple. Eat less, exercise more and take nutritional supplements.

3. DNA mutations

The big question is how do we preserve DNA against damage from the everyday metabolism by-products and ionizing radiation from space? There are many open questions. Our DNA does not sit still, it constantly moves, genes are activated and suppressed, and in this process we lose cancer suppressor genes causing cancer that eventually can kill us. Our scientists today are smart, but they are not that smart that they would know all the future research results they have not yet detected. The answer would be stabilization of DNA, as this could prevent many cancers and would definitely prolong our lives. 

4. Reducing telomere length

In one study the telomere length at the age of 100 was only 40% compared to the age of 20. Now we are learning that it is possible to lengthen telomeres by healthy lifestyles. Research in humans has shown that increased physical activity elongated telomeres. So did vitamin C, E, vitamin D3 supplementation and resveratrol. A Mediterranean diet and marine omega-3 fatty acid supplementation elongate telomeres as well. In addition, higher fiber intake, bioidentical estrogen in women and testosterone in men can be effective in elongating telomeres. Finally, relaxation techniques like yoga and meditation are also elongating telomeres.

Longer telomeres are responsible for longevity

Below I am listing evidence that longer telomeres are not only responsible for longevity, but protect you also against major diseases like heart attacks, strokes and cancer.

I like to start by providing a link where research explains more about this question.

Below I am going to summarize the facts that show that telomere lengthening is something to strive for.

General comments about telomere length

When telomeres shorten progressively, senescence sets in. Cells undergo a process called apoptosis, which is the normal process of cells dying. But some cells stay in that in-between state and transform into cancer cells. Shortening of telomeres affects health and the lifespan of a person. Shorter telomeres are responsible for the development of disease and reduced survival.

Telomeres as an internal clock, age-related

Telomere length can serve as an internal clock as to how long our cells and organs will live. In this context it is important to mention that lifestyles have an important role in preserving the length of telomeres (see below).

Telomere length decreases with age. In humans the loss of telomere length is about 26 (24.8–27.7) base pairs per year. This is the “clock that is ticking”. A number of factors affect the telomere length: age; genetic factors (some people come from families with longevity); certain factors that influence the gene expression, called “epigenetic factors”; social status and economic well-being; exercise; and smoking. The good news for everybody: gender does not affect the rate of telomere length loss, but lifestyle does!

Measurements of telomere length

  1. People who had their white blood cell telomere length tested and got the result of having shorter telomeres than the average in their age group, had a 3-fold higher risk of developing a heart attack. People in nursing homes with shorter telomeres had a much higher risk of death than controls with longer telomeres. Excessively short telomeres can lead to genomic instability, inter-chromosomal fusion and cancer.
  2. In cancer cells the telomeres are short, but telomerase, an enzyme that can elongate telomeres is elevated compared to the normal surrounding cells. Several studies have shown that shorter telomeres are a risk factor for cancer. An example was a genetic syndrome, called dyskeratosis congenita. Dyskeratosis congenita – Wikipedia In this syndrome the body cells have short telomeres. This leads to premature graying, vulnerability to infections, progressive bone marrow failure, predisposition to cancer at a young age and premature death in adults.

Effects of smoking and stress on telomeres

  1. Effects of cigarette smoking: If you smoke one package of cigarettes per day, you lose an additional 5 base pairs in the telomere (on top of the average of 26 cited above). If you smoke one pack of cigarettes a day over 40 years, this is the equivalent to the loss of 7.4 years of life.
  2. Stress ages you faster. A study showed that telomeres were shorter in a group of stressed women and telomerase was missing as well, when research measured white blood cells (monocytes). Accelerated telomere shortening in response to life stress. The difference between the telomere length of a control group and the stressed women was the equivalent of 10 years of life on average!

Lifestyle factors that influence telomere length 

Dietary factors

High fiber intake showed an association with elongated telomeres in a group of women, but excessive weight shortened telomeres. Polyunsaturated fatty acids, especially linoleic acid was shortening telomeres as well. Reduction of protein intake tended to cause longer telomeres, which is responsible for longevity. In rat experiments protein restriction early in life led to longevity and long telomeres. In these animals’ kidney cell telomeres were particularly long.

Dietary supplements

Detailed studies exist about the effect of omega-3 fatty acids on telomeres. Studies followed women who consumed foods rich in omega-3 fatty acids for 5 years. A control group with low omega-3 fatty acids in their diet were also part of a study. The antioxidant effect of omega-3 fatty acids reduced the rate of telomere shortening. The control group lacking omega-3 fatty acid in the diet had much shorter telomeres. This group had a moderate risk for developing breast cancer. Other antioxidants like vitamin E, vitamin C, beta-carotene showed a link to longer telomeres and a lower risk to develop breast cancer. Antioxidants protect the DNA of telomeres from oxidative damage.

5. Decreasing hormone production

Another factor of aging is hormone deficiency in general and human growth hormone (HGH) deficiency in particular. In the past the school of thought was that HGH was only important for bone growth in children and young teenagers. However, more research revealed that it has also an important maintenance function. This maintenance concerns our muscles including the heart and to preserve our brain. Here is a review article about human growth hormone deficiency that may be mind-blowing to you. When people age, they lose HGH production putting them at a considerable risk to get heart attacks and strokes. But they are also at a higher risk of serious falls due to muscle weakness and balance problems.

Diagnosis of HGH deficiency

When the doctor detects low IGF-1 levels in the blood this is a sign of HGH deficiency. This graph shows that beyond the age of 60 HGH levels are extremely low. Tests that check for low HGH metabolites in a 24-hour urine sample are necessary to confirm this.

Replacement of HGH in aging people

When this test is also showing HGH deficiency, the time has come to do daily HGH injections with human HGH. The injection is easy, as it uses using a similar pen that is the common device for insulin injections. The dosage is only between 0.05 mg and 0.25 mg per day, and the administration is before bedtime. There is a significant cost to this treatment. For this reason, it is important to check whether the personal health care plan covers injections with human growth hormone, as it is a true hormone deficiency in many aging people.

Replacing missing HGH production with HGH injections

This is remarkably effective not only for heart attack and stroke prevention, but also to treat muscle weakness. In addition, it treats lack of mental clarity and increases general well-being. Patients report that their joint and muscle aches disappear. They can engage in physical activities again. But HGH is not the only hormone that needs monitoring. Tests for thyroid hormones, sex hormones like estrogen and progesterone in women and testosterone in men are also necessary. When levels are low, there is a need for hormone replacement in the form of nature-identical hormones. The estimate is that you gain about 10 to 15 years of good and active living by replacing missing hormones with bioidentical ones.

6. What can we do to maximize our life expectancy?

Here are a number of factors that help preserve telomeres and thus reduce aging and keep you from getting serious illnesses like heart attacks, strokes and cancer.

  • Consider eating less.
  • Include antioxidants, fiber, soy protein and healthy fats (derived from avocados, fish, and nuts).
  • Stay lean, active, healthy, and stress-free (regular exercise and meditation).
  • Eat foods such as salmon, herring, mackerel, halibut, anchovies, catfish, flounder, flax seeds, chia seeds, sesame seeds, kiwi, black raspberries, lingonberry, green tea, broccoli, sprouts, red grapes, tomatoes, olive fruit, and other vitamin C-rich and vitamin E-rich foods. They are a good source of antioxidants. Avoid tuna and grouper fish because they are too high in noxious mercury.
  • These habits combined with a Mediterranean type of diet containing fruits, and whole grains will help protect your telomeres.
  • Replace missing hormones
What Limits Our Life Expectancy?

What Limits Our Life Expectancy?

Conclusion

At the 23rd Annual World Congress on Anti-Aging Medicine on Dec. 13, 2015 in Las Vegas the endocrinologist, Dr. Thierry Hertoghe from Belgium gave a talk about “How to extend the human lifespan by 40 years”. He said that bioidentical hormone replacement could add 15 years of life. Organ transplants, if necessary, telomerase activators and stem cell therapy can add another 25 years of life expectancy to a total of 40 years. He felt that there is a limit of about 120 to 125 years of life expectancy. I have blogged on this here: life extended by several decades.

Limits of extension of life

“Living forever” is simply not in the cards, as we do not have all the answers to preserve DNA and mitochondria from damages. What nature has done since its existence is by rejuvenation through eggs and sperms create new life. This circumvents the longevity conundrum.

We are living longer than our ancestors. Many diseases have become treatable, and it is encouraging to see this progress. But there is a limit of what can be done.

More information http://nethealthbook.com/news/the-biology-of-aging/

Sep
02
2017

Resveratrol Effective In Humans

Resveratrol is a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

First of all, a 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage 1 hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension had a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Analysts divided both stage 1 and 2 subgroups into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years.

Blood pressure lowering effect of resveratrol

The purpose of the trial was to determine the effect of resveratrol.  added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gammaglutamyl transferase (Gamma-GT) were normal in the resveratrol group.

Resveratrol effective in humans: diabetes patients

Diabetes patients can get help with resveratrol. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. Another group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Furthermore, resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. The researchers gave resveratrol to a high group (1000 mg per day), a low group (150 mg) and the third group received a placebo (fake pills). The end point was an elevation of the bone alkaline phosphatase (BAP). The investigators measured this in the beginning of the study and at 4, 8 and 16 weeks.

Difference between high and low dose resveratrol

The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can serve as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

Finally, the Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is common knowledge for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

Important information from the Nurses’ Health Study 

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11 states enrolled in the study. In 1980 participants filled in diet sheets to determine who was adhering to a Mediterranean diet. The researchers accepted 4676 middle-aged participants in this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. They also consumed fish and lean meats. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres.

Slowed telomere shortening

The lead author Marta Crous-Bou stated that overall healthy eating was responsible for longer telomeres in comparison to the control group. But the strongest association was in women eating a Mediterranean diet in comparison to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Resveratrol lengthens telomeres

Longer telomeres associated with the lowest risk to develop chronic diseases and the highest probability of an increase of the life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. Research in humans supports the notion that an increase in physical activity elongates telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

In addition, this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol is also useful in combination with other cancer treatments, which improves survival figures. As the link above explains, there is a need for more cancer clinical trials with a variety of cancers and larger patient numbers. Many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

Resveratrol is anti-inflammatory

Also, in this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has anti-inflammatory qualities. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. Furthermore,  as this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study confirmed that it is resveratrol from red wine that is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Similarly, polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. Each of the subjects received 1500 mg of resveratrol or placebo daily for 3 months. Measurements showed a decrease of serum total testosterone by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%.There was a reduction of the fasting insulin level by 31.8%. At the same time there was an increase of the insulin sensitivity by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

Most noteworthy, a double blind, randomized, placebo-controlled study was done on 50 diabetics. Arterial stiffness was determined by the cardio-ankle vascular index (CAVI). The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

Finally, 56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. The researchers used bowel disease questionnaires to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group received 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. The hippocampus is the seat for short-term memory, which is not functioning normally in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. These combined anticancer properties make resveratrol a chemotherapeutic agent. It is also effective in combination with conventional anticancer drugs.

Resveratrol helps prevent hardening of arteries and cancer

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

Jul
29
2017

Some Drink Milk, Others Are Lactose Intolerant

Some drink milk, others are lactose intolerant; this is the fact about drinking milk.

For a long time the dairy marketing board advertised with the slogan: “Got milk?”. But dairy milk consumption has declined over the past decades.

Why this is has been reviewed in this article. I like to review the problem of lactose intolerance, milk as a source of calcium to prevent osteoporosis and offer alternatives to milk consumption.

Lactose intolerance

Milk cows have been around in Europe for about 6000 years. But not everybody can tolerate milk products. Most of the Europeans, North Americans and Australians have adjusted the digestive enzymes in their duodenum to produce enzymes, called lactase that digest milk sugar (lactose) into glucose and galactose. But up to 75% of the world population (Africa, South America, Asia) is lactase deficient; they cannot tolerate dairy products. They get abdominal cramping, intestinal gas, bloating, diarrhea, nausea and vomiting from drinking a glass of dairy milk. This link explains why goat milk is better than cow’s milk for those who cannot tolerate cow’s milk.

It is also interesting that many people who are lactase deficient can tolerate cheeses, yogurt and other fermented milk products as the fermenting bacteria have digested the lactose.

Other problems with dairy products

Problems with mass production of dairy items are the following:

  • Concentrated Animal Feeding Operations (CAFO) are responsible for the majority of milk products on grocery market shelves. This means that the animals are fed unnatural corn, which leads to deficiencies and omega-6 fatty acids in the milk products.
  • Herds of animals receive antibiotics to prevent infections.
  • Farmers are administering bovine growth hormone (bST, bovine somatotropin) to stimulate more milk production. The antibiotics lead to superbugs in humans, the bST may be causing autoimmune diseases and breast cancer in humans. The healthiest milk is milk from grass-fed cows. It is high in omega-3 fatty acids. All of the milk products derived from this type of milk are also healthy.

Milk as a source of calcium

One key advertising slogan of the dairy industry used to be that milk would be such a good source of calcium, which would prevent osteoporosis. But milk also has a lot of animal protein in it, which acidifies blood. This means that the kidneys use calcium to neutralize acidic blood and excrete calcium. The net result is that there is more calcium leaving the body. Some of the calcium from the bone serves to keep the balance between acidity and alkalinity neutral.

This 12 year long Harvard Nurses’ Health Study involving 77, 761 women between the ages of 34 to 59 showed that a higher consumption of milk did not protect against hip and wrist fractures.

The myth that full fat milk causes heart attacks and strokes

There is another myth floating around, namely that full fat milk would be bad for the heart because of increased saturated fatty acids. But an Australian study showed that full fat milk is healthier for you than milk with less fat.

After 14.4 years of follow-up the group that consumed the most milk compared to the lowest fat intake group had a 69% lower death rate from cardiovascular disease!

A 2016 study showed that consumption of plain yogurt was associated with better health outcomes on the long term. Be more concerned about the sugar content than the fat content of yogurt!

Prevention of osteoporosis

For years numerous sources have indoctrinated us to accept a false concept. It is the concept of increasing milk consumption (“Got milk?”) for increased calcium intake and possible osteoporosis prevention. The sales mantra went like this: Milk-calcium-osteoporosis prevention. Now we know the real truth. Milk provides protein and calcium.  But  absorption of calcium is poor and the acidified blood is alkalinized through calcium from milk and from the bone leaking calcium into the blood and into the urine. The end result is a net loss of calcium from the bone, as it is more important to the body to keep the blood’s acid/base stable than to increase the calcium level in the bone. Sadly all the high consumers of milk from the Harvard Nurses’ Health Study ended up having fractures from osteoporotic bones.

Prevention of osteoporosis requires intake of vitamin D3, vitamin K2 and calcium (supplement or diet) as I have reviewed in this blog. In addition regular exercise is also very beneficial as is bioidentical sex-hormone replacement. It is interesting that a large clinical trial that I mentioned in this blog showed after 7 years that there were 35% to 38% less fractures of the hip than in the placebo group. Vitamin K2 is essential to keep calcium in the bones and to keep calcium out of the blood vessel walls. Vitamin D3 is important for calcium absorption through the gut wall and to deposit calcium into bone. Without all of these ingredients it is not possible to prevent osteoporosis.

Alternatives to cow’s milk consumption

  1. One obvious step is to replace cow’s milk by goat milk. As you can see from this link, there are many advantages to goat milk. What I find important is the fact that those with lactase deficiency often can tolerate goat milk while they would otherwise react to cow’s milk. There are also many goat milk products like cheese and yogurt, all of which are very healthy. They do not contain any antibiotics or bovine growth hormone (bST), the use of which is confined to cows. Goat milk products are also an excellent source of protein.
  2. You can eat a more vegetable-based diet. A lot of vegetables and fruit have calcium and protein in them.
  3. You can consume almond milk instead of cow’s milk. The downside to know is the fact that almond milk is not a significant source of protein. It has the advantage of being slightly alkaline; this will ensure that the calcium absorbed in the gut will reach the bones as long as you also supplement with vitamin D3 and vitamin K2. The many “fake milk” products such as rice milk, coconut milk and hemp milk are also poor protein sources. The only product higher in protein is soymilk. But soy has its own problems: over 90 % of the crop in North America is genetically engineered, and soy is a known allergen. As of recent, another product based on pea protein is available, and the protein content is excellent, so it is worth looking for it (It is called “Ripple”).
Some Drink Milk, Others Are Lactose Intolerant

Some Drink Milk, Others Are Lactose Intolerant

Conclusion

Drinking milk as a source of protein and calcium has become an obsession a few decades back. In the meantime it turned out that drinking milk tips the acid-base balance in the direction of acidity. This causes osteoporosis, as the kidneys excrete all of the calcium from milk that is absorbed. On top of that even more calcium is taken out from bones to recalibrate the acid-base balance.

Up to 75% of the world population is lactose intolerant. They get sick from drinking cow’s milk. But they usually tolerate goat milk quite well. Considering the fact that antibiotics are used in cow milk production and recombinant bovine growth hormone as well, I have joined the crowd that prefers goat milk instead of cow’s milk. I take the supplements I mentioned for bone maintenance (vitamin D3 and K2) and I get lots of calcium also from vegetables and salads. I have no lactose intolerance, but that’s my take on milk.

Incoming search terms:

Jun
03
2017

Fish, The Good And The Bad

I am going to review fish, the good and the bad. Fish can be very nutritious, because it contains a lot of healthy omega-3 fatty acids. But because of pollution it also has various degrees of mercury, PBC’s and other impurities.

I will discuss the good about fish oil first. Later we will learn that wild salmon is one of the best fish to eat, while we should avoid tuna due to mercury pollution.

The good about fish

Omega-3 fatty acids, also called marine oil, is an essential fatty acid. It balances omega-6 fatty acids of which we eat too much. Processed foods are full of omega-6 fatty acids, because they keep a long time on the grocery shelves without turning rancid. But when the omega-6 to omega-3 ratio is getting higher than 3:1 we are experiencing a problem. The body stimulates the arachidonic acid pathway, a metabolic pathway that produces inflammatory substances and arthritis. An old home remedy for arthritis is to use fish oil (cod liver oil). It changes the omega-6 to omega-3 ratio back to more normal levels, which can help arthritis patients. Early stage of arthritis can even heal.

Omega-6 fatty acids cause inflammation

Many processed foods contain only omega-6 fatty acids, because this is the cheapest way to produce them (they are based on vegetable oils). Instead of this you want to eat healthy fats like omega-3 fatty acids contained in nuts and fish. You can also add molecularly distilled, high potency omega-3 fatty acids (purified fish oil) as a supplement to help restore the balance between omega-6 and omega-3 in the food you eat. Corn oil, safflower oil, grape seed oil, soybean oil, cottonseed oil, canola oil and peanut oil contain omega-6 fatty acids. These are the ones that cause inflammation and disease. You must avoid them!

Omega-6 to omega-3 ratio

Compare the metabolism of omega-6 fatty acids with that of omega-3 fatty acids.

The linoleic acid of omega-6 fatty acids metabolizes into arachidonic acid, which causes pro-inflammatory mediators, PGE2 and LTB4 as shown in the metabolism link. On the other hand with omega-3 fatty acids alpha-linolenic acid (ALA) metabolizes into EPA, DHA and the anti-inflammatory mediators PGE3 and LTB5.

It is easily understandable why a surplus of omega-6 fatty acids from processed foods will disbalance the omega-6 to omega-3 ratio. This ratio should be 1:1 to 3:1, but many Americans’ omega-6 to omega-3 ratio is 6:1 to 18:1. Omega-6-fatty acids cause arthritis, heart disease and strokes. Be particularly careful avoiding soybean oil. It has become the most popular oil in the last few decades to foul up the omega-6 to omega-3 ratio. We consume it through processed foods and cooking oils.

Omega-3 supplements

When it comes to balancing omega-3 and omega-6 fatty acids in your diet, be aware that nutritional balancing can help you restore the ideal omega-6 to omega-3 ratio of 1:1 to 3:1. An easy way is to cut out processed foods as much as possible. Supplement with molecularly distilled fish oil capsules to add more omega-3 fatty acids into your food intake. Here is an example of rheumatoid arthritis patients that received omega-3 supplements. After 24 weeks their joint swelling and tenderness decreased significantly.

Rebalancing the omega-6 to omega-3 ratio was able to treat depression as this research showed. This makes you wonder how much depression may be caused by overconsumption of processed food.

Dr. Blatman suggested the following doses of omega-3 supplementation for various purposes:

  • 1 gram/day as supplementation for healthy adults with a good diet
  • 1-3 grams/day for people with cardiovascular disease
  • 5-10 grams/day for patients with an autoimmune disease, with chronic pain or with neuropsychiatric conditions

He mentioned that these doses are empirical, but in his experience this is what really works. Due to quality differences he suggested that you buy fish oil capsules in a health food store. Stay away from discount stores (the quality is the worst) and drug stores.

Other healthy oils are olive oil and coconut oil. They are also useful for cooking.

The bad about fish

1. Mercury and other pollutant

Pollution of the air, soil and rivers is causing accumulation of mercury and other heavy metals in ocean water.

This affects fish that live in the ocean. There is a pecking order of predators with the larger fish feeding on the smaller fish. The bigger the predator fish, the more mercury and other pollutants they accumulate. According to this link the safest seafood is wild salmon, pollock and oysters.

High mercury content of predator fish

Tuna is too high in mercury, so is swordfish, and shark is even worse. I only consume fish from freshwater lakes or rivers, as well as salmon, oysters and shrimp. This way I get the lowest exposure to mercury. Why is mercury bad for you? It is a neurotoxin. It can harm your brain, heart, kidneys, lungs and the immune system. Specific symptoms can include loss of peripheral vision and lack of coordination with balancing problems. There may be impairment of speech and hearing. The key is to avoid mercury exposure.

2. Rancidity of fish oil

Rancid fish oil contains free radicals that attack the lining of the arteries. There would be no point in taking fish oil, if it is rancid and destroyed what you want to protect. When you store fish oil, it can interact with oxygen and form lipid peroxides, which are free radicals. The Council for Responsible Nutrition’s quality standards monitors rancidity in fish oil. Get fish oil that meets or exceeds the Council’s standards. If you refrigerate fish oil, it stays fresh longer.

Managing mercury pollution

Smaller fish low in mercury

The first line of defense is to stick to the smaller fish. They are they prey of the large predator fish. The following fish/mussels belong into the low mercury group (alphabetical order): anchovies, catfish, clam, crab, crawfish, flounder, haddock, herring, mackerel, mullet, oyster, perch, pollock, salmon, sardines, scallops, shrimp, sole, squid, trout and whitefish.

Molecularly distilled omega-3 fatty acid supplements

You may want to supplement your omega-3 fatty acid intake by fish oil capsules. It is important that you choose the more expensive higher potency products. A molecular distillation process that removes mercury, PCB and other heavy metals creates these higher potency products. This way you only get the enriched omega-3 fatty acids in pure form. EPA and DHA in one capsule should be in the 900 mg to 1000 mg range, not less. I take 2 capsules twice per day as a daily supplement. This helps you as indicated above to balance the omega-6 to omega-3 ratio, which cuts down any inflammatory process in you.

More good news about omega-3 fatty acids

Omega-3 fatty acids have multiple anti-inflammatory effects. This helps for treating arthritis, osteoporosis, preventing heart attacks and brain shrinkage. Even depression can be influenced positively when krill oil and fish oil are both taken at the same time. It is best to think about krill oil and omega-3 fatty acids (fish oil) as complementary marine oils having multiple beneficial effects on the body. Studies have shown that arthritis and osteoarthritis improve with krill oil, but also with fish oil. Similarly, heart attacks and strokes are prevented with both krill oil and omega-3 fatty acids. It appears that both oils reduce inflammation in the arteries that is associated with high blood pressure, diabetes, obesity and metabolic syndrome in obese people. C-reactive protein measuring inflammation was reduced by krill oil up to 30% compared to placebo within 30 days. Patients with arthritis had 20% reduction in stiffness and pain.

More on krill oil

Krill oil is well absorbed into the brain and can prevent age-related brain shrinkage, preserve cognitive function and memory, prevent dementia and also possibly depression.

Other health conditions improve on both krill oil and omega-3 fatty acids like osteoporosis (in combination with vitamin K2, vitamin D3 and calcium), a weak immune system, diabetes, high triglyceride levels and cholesterol problems. Both marine oils prevent LDL cholesterol from being oxidized, which helps to prevent atheroma formation and hardening of the arteries. This prevents heart attacks and strokes.

Fish, The Good And The Bad

Fish, The Good And The Bad

Conclusion

Children received cod liver oil in the past to prevent rickets. In the 1960’s Dale Alexander wrote a book called “Arthritis and Common Sense”. Since then medicine has been revolutionized in the late 1990’s by the idea that inflammation in the body is responsible for high blood pressure, diabetes, heart attacks, strokes, arthritis and even Alzheimer’s disease. It is in this area that omega-3 fatty acids are an important supplement as fish oil capsules and krill oil capsules. These supplements can be bought molecularly distilled to be free of mercury and other pollutants.

Anti-inflammatory effect of omega-3 fatty acids

The anti-inflammatory effect of omega-3 fatty acids is a powerful preventative for all these diseases mentioned. It no longer is a question, whether these supplements work. It has become a fact backed up by large studies including mortality statistics. Even the FDA has included seafood into their food recommendations. The key is to rebalance your omega-6 to omega-3 ratio and incorporate marine oils in your diet. Your body will thank you for it with a longer, healthier life.

Mar
25
2017

How Stress Affects Our Hormone System

Dr. Andrew Heyman gave a detailed talk recently about how stress affects our hormone system. He presented his talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Understanding the Stress, Thyroid, Hormone Connections & Prioritizing Systems”.

Dr. Heyman stressed in particular that there is a triad of hormonal connections that is important to remember: the thyroid hormones, the stress hormones (adrenal glands) and the pancreas (insulin production). It seems like we need a balance of these hormones for optimal energy production and circulation. Under stress our sugar metabolism can markedly derail, we develop obesity and fatigue. But when balanced we experience vitality and wellbeing.

Metabolic activation pathways

Dr. Heyman projected a slide that showed the metabolic activation pathways. Likewise, he stated that a number of different factors could influence the hormone system:

  • Diet: trans fats, sugar, too many carbs, food allergies.
  • Drugs: drug-induced nutrient depletion (over-the-counter drugs, prescription drugs).
  • Physical exercise: frequency and type matters.
  • Environmental exposure: chemicals, pesticides, herbicides, heavy metals, plastics, molds, and pollens.
  • Stress: physical stress, psychogenic stress.
  • Genetics: methylene-tetra-hydro-folate reductase enzyme deficiency (MTHFR mutation), APOE genes, lack of vitamin D
  • Disease: past or present conditions, active disease or syndromes.

Target areas within your system

The target areas in your system are the

  • Pancreas, where blood sugar can rise because of insulin resistance. In particular, too much insulin production causes inflammation, hormone disbalances, kidney damage, and hardening of the arteries through plaque formation.
  • Thyroid gland, which depends on TSH (thyroid stimulating hormone) for activation. Autoantibodies can also affect it negatively.
  • Brain: decrease in serotonin resulting in anxiety, depression and food cravings; decreased melatonin causing sleep disturbances; increased ghrelin and decreased leptin secretion leading to overeating and obesity.
  • Liver/kidneys: both of these organs are important for detoxification; the liver produces thyroid binding globulin, which when increased can lower the free thyroid hormones.
  • Immune system (gut, lymph glands): the Peyer’s patches in the gut mucosa produce a large portion of the immune cells; lymph glands, the bone marrow and the spleen supply the rest. A leaky gut syndrome can affect the whole body, in addition causing inflammation and autoimmune reactions.
  • Hypothalamus/pituitary/adrenal glands: this is the main axis of the stress reaction. A brain under stress activates the hypothalamus. It sends a cascade of activating hormones via the pituitary gland and likewise activates the adrenal glands. Finally this leads to cortisol overproduction, and release of epinephrine and norepinephrine from the center of the adrenal glands. High blood pressure, anxiety, heart palpitations, arrhythmias and more can finally develop from this.

Hypothalamus/pituitary/adrenal glands activation and clinical effects

The main hormone axis of the stress reaction goes first from the hypothalamus, secondly via the pituitary gland and thirdly to the outside surface of the adrenal glands, which produces cortisol. The term for this is the HPA axis. Stressed people, therefore, make too much cortisol, which weakens immune functions, reduces human growth hormone production, increases belly fat, increases blood pressure and reduces insulin action. In addition, stress also reduces estrogen production in women and testosterone production in men.

Accordingly, the final clinical presentation is osteopenia, then osteoporosis with spontaneous fractures of bones. In addition there is also cardiovascular disease leading to heart attacks and strokes, and cognitive decline with memory loss. There are complications with infections. Also the metabolic syndrome can lead to obesity and type 2-diabetes.

Stress and the hippocampus

In the center of our brain there is a memory-processing unit, the hippocampus that converts short-term memory into long-term memory. Repeated stress interferes with normal hippocampus function. Indeed, high cortisol levels interfere with the proper functioning of the hippocampus causing memory problems.

Hippocampus atrophy can come from chronically high cortisol levels due to chronic stress. In addition this can lead to Alzheimer’s disease.

Effects of chronic stress

Chronic stress leads to cardiovascular disease, to diabetes, chronic inflammation, Alzheimer’s disease, thyroid disorders, cancer, neurological disorders and autoimmune diseases. Researchers showed that inflammation releases tumor necrosis factor-alpha (TNF-alpha), which is a key player of chronic inflammation. This, however leads to the release of other inflammatory kinins like IL6 and others. The resulting chronic inflammation can cause Crohn’s disease, rheumatoid arthritis, insulin resistance, dementia, metabolic syndrome, obesity and atherosclerosis with associated markers (decreased HDL, increased LDL, CRP and triglycerides).

Hormone imbalance causes disease

  1. Excess cortisol production from stress leads to Th2 type inflammatory kinins; usually associated with this is a reduction of DHEA (a male hormone in the adrenal glands), which leads to reduced Th1 type kinins. Overall, the end result is chronic inflammation. When chronic stress has tired out the adrenal glands, a four-point salivary cortisol level test shows a flat curve. This indicates adrenal gland fatigue or, if worse, even adrenal gland insufficiency. Most noteworthy, patients with leukemia, breast cancer, uterine cancer, prostate cancer, pituitary gland cancer and lung cancer show such a pattern.
  2. The disregulation of the HPA axis is particularly evident in patients with metabolic syndrome. People who have this syndrome have a high morning serum cortisol level. As a matter of fact, high cortisol increases the risk to develop metabolic syndrome.
  3. Metabolic connections: high cortisol leads to a partial blockage of thyroid hormones, which in turn leads to hypothyroidism. Hypothyroidism will affect glucose tolerance, and if not treated leads to type 2 diabetes.

In a large study involving 46,578 members of Kaiser Permanente Northwest it was determined that for every 1 point above a fasting glucose level of 84 mg/dL there was an additional 6% risk to develop type 2 diabetes over the next 10 years.

Pathological hormone disturbances

Dr. Heyman mentioned the following hormone patterns that he discussed in detail, increased cortisol levels, increased insulin levels and decreased thyroid levels.

Elevated cortisol

Prolonged elevation of cortisol leads to atrophy of the hippocampus with brain atrophy and Alzheimer’s or dementia. The immune system gets altered, there is lower DHEA hormone leading to weaker muscles and weakened immunity. There is insulin resistance (decreased insulin sensitivity), decreased serotonin and increased depression. Carbohydrate cravings lead to weight gain (central obesity). Changes in the thyroid metabolism leads to hypothyroidism.

Increased insulin level

People who develop high insulin levels are usually sugar or carbohydrate addicts. As they gain weight they change their metabolism into the metabolic syndrome. The extra insulin that is floating around triggers the insulin receptors to become less sensitive (also called “resistant”). The people love to eat. They snack frequently on protein bars and candy bars. As they gain weight, consequently their energy goes down and as a result they often develop painful joints. This prevents them from being physically active. They notice episodes of foggy thinking. Women complain of frequent yeast infections.

The body tries to compensate by slightly decreasing thyroid hormones and slightly increasing cortisol levels.

Decreased thyroid levels

There is increased lactic acid production and decreased insulin sensitivity. Oxidative stress is increased. The patient is depressed and cognition and memory are reduced. Also, the gut has slower motility. The mitochondria, the energy packages in each cell are reduced and functioning less productively. Cardiac function is reduced.

The body tries to compensate for the primary thyroid weakness by slightly elevating insulin and cortisol.

Treatment of stressed hormone system

Before the doctor can treat a disbalanced hormone system, blood tests have to be done that show what kind of hormone constellation is present. Dr. Heyman suggested the following support with supplements.

Treatment of thyroid disorders

Thyroid supplementation may involve any of these: Selenomethionine, iodine, chromium, thyroid glandular, tyrosine, ferritin, Ashwagandha, coleus forskohlii, 7-keto DHEA, ferritin and iron. Other possible supplements that were mentioned by Dr. Heyman were Rhodiola, schisandra, ginseng, Rg3, eurycoma longifolia, neuromedulla glandular, DHEA, tryptophan/5 HTP, licorice, Cordyceps.

This, however, is not all. Missing thyroid hormones need replacement with a balanced T3/T4 medication like Armour thyroid.

Adrenal support

The following supplements are used to support adrenals: Adrenal glandular, vitamin C, adrenal cortex extract, Holy Basil, Pharma GABA, Magnolia/Phellodendron, L-theanine, sterols & sterolins.

Pancreatic support

These supplements support the insulin production in the pancreas:

Chromium, vitamin D, magnesium, alpha-lipoic acid, fish oil, micro PQQ, bitter melon, cinnamon, arginine, vanadium, benfotiamine (synthetic derivative of B1 vitamin) and Bergamot.

Dr. Heyman completed his talk by giving a few patient examples, explaining what blood tests showed, what the hormone disbalance was, and which treatment options were helpful.

How Stress Affects Our Hormone System

How Stress Affects Our Hormone System

Conclusion

Dr. Andrew Heyman gave a talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. He talked about how stress in due time affects our hormone system. Symptoms from stress can stem from different causes including hormone disbalances. Given these points, conventional medicine would simply treat the symptoms. However, this will not be successful with stress-induced hormone disbalances, namely, because it does not treat the causes. Obviously only causal treatment of the hormone disbalance will restore the person’s wellbeing and the symptoms will disappear at the same time. In short, anti-aging medicine and integrative medicine are attempting to follow this approach.

Feb
18
2017

Weight Gain In Menopause

Dr. Tasneem Bhatia, also known as Dr. Taz gave a lecture about weight gain in menopause. This was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The full title of the talk was “Hormone Balance and Weight Control in Menopausal Women”. Dr. Taz practices integrative medicine at CentreSpring MD, Atlanta. GA.

A few statistics about menopause

Weight gain in menopause is common. There are 50 million women who suffer from this in the US. Globally 300 million women have this problem. The average weight gain is between 5 and 50 pounds. There may be a small percentage of women where a genetic component comes in, and where all the females in the ancestry had a weight problem after menopause. But we do not know for certain what is genetic and what is due to hormone deficiency. It is only in the last few decades that doctors have determined how important hormone deficiencies are in menopause.

About 10 million women who are over 40-years-old need treatment in long-term care facilities.

We will see below that when physicians incorporate this knowledge into a treatment schedule, the weight problem can normalize. It is possible to reduce the costs of taking care for postmenopausal women with obesity and diabetes by 2/3 of these cases.

Pathophysiological changes in menopause

There are three intertwining aspects that drive weight gain in menopause. There is an altered metabolic rate, and less calories are burning, which makes you gain weight when you eat the same amount of calories. Secondly there is a significant decline of three key hormones, estrogens, progesterone and thyroid hormones in menopause. Third, as the weight rises and the other mentioned hormones are missing, it is harder for the pancreas to keep up with insulin production and insulin resistance develops. I will explain this further below.

1. Decreased energy expenditure

With the lack of the ovarian hormones there is a slowing of the resting metabolic rate. There is also is a decrease of energy expenditure from reducing fat oxidation. Overall there is less need to consume the same amount of calories as before. But the hormonal changes trigger hunger and cravings.

2. Ovarian aging

With ovarian aging there is less estrogen production in the ovaries. This leads to less ovulation in the premenopausal period. A lack of ovulations creates a lack of progesterone production. When there are anovulatory cycles, there is no progesterone producing corpus luteum reducing progesterone production further. When estrogen and progesterone are missing, this is a stress on the thyroid gland that is trying to partially compensate for the lack of the ovarian hormones. Eventually though there is permanent thyroid hormone production and hypothyroidism sets in. This is very hard on the adrenal glands that produce cortisol. For some time the adrenal glands can compensate for missing thyroid hormones with cortisol overproduction. But in time adrenal gland fatigue develops.

3. Insulin resistance

Insulin resistance can lead to diabetes, which becomes a real menace together with the metabolic changes of obesity.

Health risks of weight gain

Dr. Taz pointed out that around the time of menopause there are very specific risks that have to do with the metabolic changes. There is a definite risk for heart attacks and strokes as LDL cholesterol and triglycerides show an increase and arteries calcify from circulating calcium leaking out from the bones into the blood stream.

Osteoporosis is common in menopause; the brittle bones lead to an increased risk of fractures in the hips, wrists and vertebral bodies.

Postmenopausal women also risk increase of cancer, particularly breast cancer and colon cancer. The higher the weight, the more risky it is for these women to get one of these cancers.

Alzheimer’s disease and cognitive decline is also very common in menopause. This may be directly related to a lack of estrogen and progesterone, but may also have to do with overconsumption of sugar and starchy foods.

Hormone changes in menopause

Hormone changes in menopause can be complex. It is not only about a lack of estrogens and progesterone. All hormones work together. When there is weakness in one area (in the ovaries with menopause), this condition will affect the hormones that are acting in the same way or in opposition to ovarian hormones. In this way it is understandable that the thyroid gland can develop a weakness (hypothyroidism) or why the adrenal glands are over stimulated first, but later suffer from adrenal fatigue. In a similar way the pancreas produces too much insulin, partially because weight gain stimulates this. Typically the physician finds the fasting insulin level elevated with menopausal obesity. But as insulin levels are too high, the body’s insulin receptors get lazy and do not respond fully to insulin anymore. The name for this condition is insulin resistance. In time insulin resistance can lead to diabetes.

1. Lack of estrogen

A lack of estrogen in menopause is likely the single most important reason for weight gain in menopause.  As estrogen secretion declines, visceral obesity increases. In addition there is an impairment of insulin regulation. With obesity there is an additional risk of developing diabetes.

2. Progesterone

Progesterone is the other female hormone that is reduced with menopause. Bioidentical progesterone cream can prevent osteoporosis and hot flashes in menopause. Bioidentical progesterone replacement can also help a menopausal woman to sleep better. In menopause the production of progesterone goes down by 75% while estrogen production drops down by 35%.

3. Hypothyroidism

Menopausal women often suffer from hypothyroidism (with elevated TSH blood tests). Weight gain is often part of this. As a result it is important to check for hypothyroidism in menopausal women. It is important to check for micronutrients like iodine, selenium and iron and if they are low, supplementation may be necessary. Some women develop an inflammatory thyroiditis, called Hashimoto’s disease. A thyroid nuclear scan can confirm this. The reason this is important to recognize is that after several years when it burns itself out, hypothyroidism develops often, which requires thyroid hormone replacement.

4. Cortisol response

The cortisol response to stress is suboptimal due to the decreased progesterone levels in menopause. Progesterone is a precursor of cortisol, so in menopause not enough of it is around to synthesize cortisol. But in a group of menopausal women following a significant stressful event cortisol production was much higher than in non-stressed women.

5. Other hormones

Other hormones like leptins and melatonin are also contributing to weight gain in menopause. In rat experiments performed ovariectomies (mimicking menopause) and there was a clear relationship between low estrogen levels and weight gain. Higher estradiol doses inhibited leptin expression resulting in weight normalization.

Leptin and melatonin are influencing insulin regulation. This can in time lead to diabetes in connection with weight gain. It is at this point when a woman’s body shape can turn from a healthier pear shape to an unhealthy apple shape. The extra visceral (abdominal) fat is very active metabolically and causes inflammation in the body. These changes can lead to high blood pressure, heart attacks, strokes and digestive dysfunction.

Treatment of weight gain in menopause: food, hormones and lifestyle

How do you treat a complex problem like weight gain in menopause? It is no surprise that this will require a number of treatment modalities in combination.

1. Diet

It is important to start on an anti-inflammatory diet like the Mediterranean diet. Any extra sugar should be cut out as surplus carbohydrates lead to fat deposits and higher blood lipids. Dr. Taz suggested a 1200-calorie diet. Reduce salt intake. Eat more food during the day until 4 PM, nothing to eat after 8 PM. Increase plant-based foods, lower or eliminate trans fats. Increase foods rich in probiotics (bifidobacteria) like kefir, yogurt and kombucha.

2. Exercise 

Do some exercise in a gym where you combine a treadmill for 30 minutes with 25 minutes of weight machines for strength training. Aim for doing this 5 times per week. But it would be more beneficial doing it every day. Have additional activity bursts on and off during the day. Exercise has been shown to increase HDL cholesterol, which protects from heart attacks and strokes.

3. Stress management

Supplements like adaptogens help the adrenal gland to better cope with stress. These are available through your health food store. Meditation, yoga, self-hypnosis will all help to refocus and protect you from stress. B-complex vitamins and vitamin C strengthen your immune system and give you more energy. Building and maintaining community is another factor in reducing stress.

4. Establishing healthy sleep

Many postmenopausal women have poor sleep habits, partially from hot flashes (due to estrogen deficiency), partially from melatonin deficiency and also from progesterone deficiency. In the next section I will describe how to normalize these hormones. But in addition you need to educate yourself to go to bed between 10 PM and 11 PM every night and to sleep 7 to 8 hours. If you go to bed later, you will disturb your diurnal hormone rhythm and this will interfere with a normal sleep pattern. There is an age-related reduction of melatonin production in the pineal gland. This is why many postmenopausal women are deficient in melatonin. You may need 3 mg of melatonin at bedtime. If you wake up in the middle of the night you could take another 3 mg of melatonin. You may experience a few nightmares as a side effect; otherwise melatonin is very well tolerated.

5. Bioidentical hormone replacement

The complex hormone deficiencies described above are responsible for the many symptoms of menopausal women including weight gain. It is important to work with a knowledgeable health care provider who knows how to prescribe bioidentical hormones. Typically blood tests and possible saliva hormone tests are done before replacement. This establishes which hormones have to be replaced. Typically bioidentical progesterone is replaced first. Secondly, estrogen is added as Bi-Est cream, if blood levels indicate that it is low. If thyroid is required because of a high TSH level (meaning hypothyroidism) supplementation with Armour or a similar balanced T3/T4 combination is started. If fasting insulin levels are high, the doctor may want to start metformin as this is known to normalize insulin resistance. Blood tests have to be repeated from time to time to ensure adequate hormone levels.

6. Supplements

Every woman treated will likely require different supplements. But magnesium is one mineral that is often missing in the diet. 250 mg of magnesium twice a day will be enough for most women and men to balance internal metabolic reactions. Magnesium is a co-factor to many enzyme systems. Vitamin K2 (200 micrograms daily) and vitamin D3 (around 4000 to 5000 IU per day) in combination are important to prevent osteoporosis. Apart from these there are many options to take other supplements. Ask your healthcare provider what you should take.

Weight Gain In Menopause

Weight Gain In Menopause

Conclusion

This was a fast review of what Dr. Taz explained in a talk about weight gain in menopause. There are complex hormone changes that need to be addressed. Patients with menopause need to follow a well-balanced diet like the Mediterranean diet. Stress management skills need to be learnt. A regular exercise routine needs to be followed. Healthy sleep patterns have to be reestablished. And missing hormones need to be replaced not in synthetic forms, which are toxic to the body, but in the bioidentical forms. Postmenopausal women will feel better when this comprehensive treatment program is in place; and in time they will feel normal again.