Feb
08
2014

Sugar As A Cause Of Cancer

It has been known for a long time that cancer cells can survive without the ordinary aerobic pathways of energy production. They can get energy from a metabolic pathway, which bypasses normal cell metabolism (aerobic glycolysis). But many attempts of designing a cancer therapy to exploit this difference have so far been unsuccessful.

This Mayo Clinic website even explains that it would be a myth that cancer would grow better with sugar. The following pieces of research question this myth.

Sugar makes cancer grow faster (activates oncogenes) in fruit flies

In this study from the Icahn School of Medicine at Mount Sinai in New York City fruit flies were used as an animal model. You may ask, why fruit flies; we are not fruit flies, we are humans! As incredible as it sounds, on a cellular level our cell metabolism and the cell metabolism of fruit flies is identical. But the generation time of fruit flies is much shorter and results can be seen in days and weeks. To achieve the same in human trials would take months and years. Also, researchers could breed a strain of fruit flies that was susceptible to develop tumors. When they were fed sugar, the fruit flies developed insulin resistance within a short time. This model was chosen by the researchers as it is known for some time that in humans insulin resistance from diabetes, obesity, and other metabolic diseases leads to a higher risk of developing breast cancer, liver cancer, colon cancer and pancreatic cancer. The researchers wanted to sort out what the metabolic advantage of the cancer cells was under these conditions.

The researchers found that the sugar in the diet activated silent cancer causing genes (called “oncogenes)” in the fruit flies that in turn helped to promote insulin resistance and the development of tumors. Because of the insulin resistance sugar could not enter into the normal body cells, but the tumor was using up all of the sugar allowing the tumor cells to multiply at a rapid rate. The end result was that the sugar from the diet fed the cancer cells directly making them grow faster. Interestingly, when these flies that had developed tumors on a high sugar diet were switched to a high protein/low sugar diet, the tumors stopped growing and were contained.

In this fruit fly example the researchers were subsequently able to block cancer cell growth by special cancer suppressing drugs (acarbose, pyrvinium and an experimental drug AD81), which were given in combination. 90% of the flies given the triple-drug treatment survived to adulthood while control flies not treated with this regimen all died of their tumors.

Although this model was only done in fruit flies and one could question whether or not this was relevant to what is happening in human cancer patients, the following piece of research puts this fear to rest.

Sugar As A Cause Of Cancer

Sugar As A Cause Of Cancer

Human breast cancer cell study in vitro

In January 2014 the American Society for Clinical Investigation published a collaborative study between the Lawrence Berkeley National Laboratory, Berkeley, California, CA and the Hokkaido University Graduate School of Medicine, Japan, which used human breast cells in tissue culture showing that sugar could cause breast cancer.

The original papers of this US/Japanese research team are quite technical and I do not expect you to understand this link where it is published. I posted it for those who want in depth information. The researchers used a simple tissue culture model where they could observe tumor growth in cell cultures under the microscope using a gel where the breast tissue samples were placed side by side with normal breast cells that served as controls. The cell cultures of both normal cells and malignant cells were obtained from the same reduction mammoplasty tissue samples. This way the cell cultures mimicked a situation as close to the reality of what is going on in a woman’s body when breast cancer develops.

The normal breast epithelial cells were seen in culture to get organized as a roundish cell formation (an acinus formation) while the cancer cells were growing as irregular cell clumps. This visual effect was reproducible and is depicted in the paper. With high sugar concentrations in the growth medium breast cancer cells multiplied at a faster rate, not so the normal cells. But some normal cells underwent a transformation into abnormal and cancerous cell types. On the other hand, when sugar concentrations were severely restricted, morphological changes took place where cancer cells slowed down their growth or stagnated while some of them even changed into the normal cell formation (acinus formation). Using various known oncogene stabilizers the investigators could show that the same effect was noted as with the low sugar concentration in the growth medium.

The investigators tested whether other cell lines of breast cancer would show similar results as to the effects of sugar feeding or restriction. They were able to show that high sugar feeding activated cancer cells, no matter where the cancer cell lines originated. The authors discussed that metformin, which is known to control the metabolism in diabetic patients and lowers blood sugar levels, has also been shown to calm down growth of cancer (due to stopping oncogene stimulation), which improves the survival rates of many different cancer types in diabetic patients; it also reduces the risk of developing cancer in those who are taking metformin.

Other investigators have shown in mouse experiments that an impressive lowering of cancer rates could be achieved with low carb diets.

Human evidence for cancer causation and cancer prevention

Several clinical studies seem to indicate that there is a higher cancer rate in diabetics where insulin resistance can lead to activation of cancer producing genes (called oncogenes) and cause various cancers. In this link colorectal cancer and pancreatic cancer are discussed in relationship to diabetes and insulin resistance. High glycemic foods (sugar, starchy foods) were associated with breast cancer, colorectal cancer and endometrial cancer. The majority of trials showed this association although not all. The more obese patients were, the more pronounced the insulin resistance was and the more the relationship to these cancers became apparent. A diet that is high in starchy foods like potatoes, rice and bread is causing pancreatic cancer as was shown by researchers at the Dana-Faber Cancer Institute, Brigham and Women’s Hospital and Harvard School of Public Health. High glycemic diets have shown to cause colorectal cancer, diabetes and being overweight. The Standard North American Diet (SAD) is a pathway to many chronic illnesses due its high load in refined carbohydrates. Ironically the abbreviation for it is “SAD”, which in my opinion reflects adequately its sad influence on health and well being. We know now that sugar and starchy foods lead to insulin overproduction, which in turn causes the metabolic syndrome (also known as “insulin resistance”). This causes the immune system to weaken and fat to be deposited as visceral fat in the stomach area. Visceral fat is metabolically very active as it secretes cytokines like tumor necrosis factor alpha (TNF alpha), COX-2 enzymes and others. Insulin and growth factors from the visceral fat gang up together with the elevated blood sugar, which activates tumor-producing genes (oncogenes) to cause cancer.

While cancer rates are higher in patients with insulin resistance, they were lower in patients who did have normal insulin levels. It is important to concentrate your efforts on normalizing weight, which will normalize insulin sensibility and avoid the development of cancer. Sugar avoidance and avoidance of cereals and starchy foods will help you achieve this goal.

Conclusion

Although the idea that sugar could cause cancer has been around since 1924 (Dr. Warburg), it has taken up to now to be proven in animals and humans.

The purpose of this blog was to show how there is a connection between the consumption of sugar and starchy foods and various cancers in man. Animal experiments are useful in suggesting these connections, but many clinical trials including the Women’s Health Initiative have shown that these findings are also true in humans. It is insulin resistance due to sugar and starch overconsumption that is causing cancer.

We are now in a position to know why people who consume a low carb diet, develop less cancer than people who consume a high carb diet. I have followed such a low carb diet (also known as low-glycemic index food diet) since 2001 and find it easy to follow. However, I do not dispute that it takes some discipline to change the old way of eating to the new one. The benefits are definitely worth it: you are feeling well now and you are staying well as you age.

More information about hyperinsulinism that can cause breast cancer: http://nethealthbook.com/cancer-overview/breast-cancer/causes-breast-cancer/

Last edited Nov. 7, 2014

Incoming search terms:

Nov
16
2013

You Can Fight Back Against Arthritis

Osteoarthritis affects about 4 to 5% of the population with women outnumbering men by 2 to 1. The age of onset typically is less than 50 years, but becomes more evident and more disabling beyond the age of 50. About 40 to 60% of osteoarthritis is genetically linked as twin studies in women have shown (Ref.1).

Synonyms for osteoarthritis are degenerative joint disease, osteoarthrosis and arthrosis.

Till recently arthritis was accepted as something that was inevitable: people were getting old, were getting stiff and sore, and had to “take it easy” as a result when they got older. Things are not as uncomplicated, as arthritis affects about 53 million Americans, and it has become the leading cause of disability in the US.

Rheumatoid arthritis is an autoimmune disease. It is not a disease of “old age” but can affect people of every age group. The body reacts to components in joint tissue, and this immune reaction to collagen will produce inflammation, pain and ultimately disability.

So far osteoarthritis was believed to be the result of wear and tear affecting the aging population, but more recently it has been discovered that osteoarthritis is also accompanied by the same inflammatory immune factors that are involved in rheumatoid arthritis.

When the body attacks collagen, which is needed to keep the joints moving smoothly, microscopic particles of it wander into the blood stream. There they are perceived as foreign molecules, and the immune system produces inflammatory substances (cytokines). These are sending out an army of “killer T-cells” to combat the collagen, which is perceived as a foreign matter. They are bombarding the exposed cartilage with toxic substances. This means a chaotic combination of oxidative stress and more inflammation. Over time the cartilage that was meant to protect the joint in its function to move freely is eroded and destroyed. For the person suffering of this disordered reaction, it means that the joint is not only creaking but causing pain, which is made even worse by weight bearing (walking, standing). Any person suffering of osteoarthritis will complain that he or she feels stiff and sore especially after a period of inactivity.

Commercials for anti-inflammatory medication are plentiful, and many sufferers resort to the pain relief that is promised. The warnings are mentioned right after the commercial or on the medication package, if the patient reads the fine print. Most anti-inflammatory medications are causing irritation of the stomach, and the kidneys get damaged (nephropathy)with prolonged use from these pills despite the promises in commercials of a happy, active and pain free life.

You Can Fight Back Against Arthritis

Causes of arthritis

There are many varied causes that can all contribute to developing arthritis.

It is important to take a critical look at lifestyle choices. Excessive body weight puts an additional burden on the joints in the body. Increased body fat is not just sitting at the abdomen as an inert potbelly. Abdominal fat is a highly active metabolic organ that releases inflammatory substances into the blood stream, which distributes them throughout the body. It is known to damage blood vessels. Inflammation will damage the joints as well. The statistics show that 33.8 % of obese women have arthritis. The percentage for obese men shows that 25.2 % suffer of arthritis.

Smoking leads to circulatory problems, and lack of oxygenation in the body’s tissues. It is a mistake to believe that damage is done only to the lungs or the heart. The joints will be affected as well.

Mechanical stress with inadequate self-repair is one cause; misalignment of bones such as knock-knee (genu valgum) and bowleggedness (genu varum) will lead to premature osteoarthritis of the knees as can loss of muscle strength. Exercise without injury does not contribute the risk for developing osteoarthritis; it is actually part of the rehabilitation plan.

According to Ref. 2 there are other causative factors, such as increased age, female sex, race (black women have a twofold increase of arthritis over Caucasian women), estrogen deficiency, nutritional factors, genetics, metabolic and endocrine disorders, joint trauma, joint deformity, occupational factors and sports participation (accumulation of mini injuries).

One of the newer findings is that osteoarthritis is actually an inflammatory condition where numerous destructive processes occur within the affected joints leading to a breakdown of cartilage and supportive synovial fluid factors (proteoglycans). These findings lead to the possibility of new therapeutic approaches discussed below.

Diagnosis of osteoarthritis

According to Ref. 1 there are no blood tests and analysis of synovial fluid is non-diagnostic. Diagnosis of osteoarthritis is made by history, X-rays of the affected joints and clinical findings. There are joint tenderness and swelling of the affected joints. Heberden’s nodes (swelling of the distal interphalangeal joints or DIP joints) and Bouchard’s nodes (swelling of the proximal interphalangeal joints or PIP joints) are present. There can be a decreased range of motion and a grating sound of two ends of bones rubbing together (called “crepitus”).  X-rays show typical osteoarthritis details with a narrowing of the joint space of the affected joint, subchondral sclerosis (increased bone formation around the joint) and new bone formation at the joint margins, called “osteophytes”).

Integrative therapy of arthritis

Ref. 2 points out that integrative treatment of arthritis is aimed at reducing joint pain, increasing joint function and reducing further joint deterioration. Some measures are symptomatic only, others are disease modifying.

Nutrition

Dietary habits can promote good health or have disastrous consequences. The news has been out for some time that the typical North American diet with a high load of omega-6 fatty acids will stoke the fires of inflammation in the body and lead to arthritis, heart disease and cancer. Soybean oil, cottonseed oil and safflower oil contain the cheaper omega-6 oils that are widely used in food processing and bakery products. Refined carbohydrates contribute to unhealthy spikes in blood sugar levels and wreak havoc in their own way paving the downward slope to insulin resistance, metabolic derailment, and diabetes. Take a hard look at your shopping wagon. Stay away from processed foods, shop the periphery of the supermarket, and choose organic meats, vegetables and fruit. Use heart healthy fat in the form of virgin olive oil. A Mediterranean type diet will be a good choice. Just bear in mind, that a heap of pasta like Fettuccine Alfredo does not constitute what a healthy Mediterranean diet is all about. An anti-inflammatory diet such as a Mediterranean diet also includes deep-water fish as a source of omega-3 fatty acids or molecularly distilled omega-3 capsules (you need 7 to 8 high potency, molecularly distilled fish oil, 1000mg per capsule) every day.

This approach has shown beneficial effects in beginning stages of osteoarthritis.

It is important to cut out sugar and starchy foods to reduce insulin resistance, which would otherwise maintain the inflammatory chronic condition causing arthritis and cardiovascular disease. For the same reason cutting out wheat and wheat products has been shown to be beneficial in reducing inflammation. Such an anti-arthritis diet prevents heart attacks and strokes at the same time.

Weight loss

Ref. 2 points out that one study showed that weight reduction of only 10% had a 28% improvement in joint function. When this is combined with an exercise program the improvements are even more striking.

Exercise

Exercise consists of aerobic training, resistance training and muscle strengthening. When patients with osteoarthritis were observed throughout controlled exercise programs, flexibility and range of motion of the affected joints were improving. A minimum of three days per week of exercise was required to show improvements, but the best effects were observed when patients exercised most of the days. Joints become less swollen, show improved circulation and less pain. Before an exercise program is done, those with increased cardiovascular risk should first undergo an exercise stress test to measure their cardiovascular reserve and establish that it is safe to start a program. Secondly, an acutely inflamed or swollen joint should first be treated before an exercise program is started. Lack of exercise will promote more disability. While a person with arthritis may be unable to run a brisk race due to joint discomfort, he or she will find water exercises and swimming much more manageable. Group programs for people with arthritis are available and you may enjoy the supportive company.

Heat and cold therapy

Ref. 2 points out that three weekly 30 minute sessions of microwave diathermy for 4 weeks showed a significant reduction of joint swelling in knee osteoarthritis with improved joint function and reduced pain. On the other hand cold packs for aching muscles after strenuous exercises can decrease muscle spasm and increase the pain threshold. Range of motion increased with cold application and joint swelling was reduced. Patients who have cold sensitivity (such as Raynaud disease) need to refrain from the latter treatment modality.

Acupuncture and electro acupuncture

These treatments were found by Ref.2 to be useful as an adjunct to anti-inflammatory medication with NSAIDS (non steroidal anti-inflammatory drugs); the advantage was that the dosage of NSAIDS could be reduced, which reduced the potential serious side effects of gastric bleeds and kidney damage. Note that people with pacemakers or CNS stimulators cannot use electro acupuncture.

Intraarticular steroid injections

When only a few joints are affected by osteoarthritis (or rheumatoid arthritis), a physician can inject a corticosteroid into the joint. However, there are limitations, as each joint should not be injected more than 3 to 4 times per year. Otherwise there can be damage to the joint cartilage, which would make the arthritis worse. However, I have seen surprisingly good results for a long period of time, which allowed the patients to exercise and stabilize the joints that way.

Complementary treatments

A number of supplements and herbs are effective in reducing inflammation. Omega-3 fatty acids are the precursors for anti-inflammatory prostaglandins in the body, which helps both patients with osteoarthritis and rheumatoid arthritis. As indicated under nutrition above, higher doses are required for this effect and for safety (avoiding toxicity from mercury and PBC’s) molecularly distilled omega-3 fatty acid supplements should only be used (yes, they are more expensive).

Curcumin, the active ingredient of the spice turmeric, has been used in India and Asia for its anti-inflammatory and antioxidant properties for centuries. It helps not only arthritis, but also helps also against the illnesses that are often associated with it (obesity, diabetes, heart disease, autoimmune conditions). Ref. 2 points out that curcumin neutralizes inflammatory agents circulating in the blood of patients with arthritis.

Standardized ginger extract was shown to reduce pain significantly in patients with knee osteoarthritis.

Other common supplements for building up cartilage in the joint are glucosamine sulfate and chondroitin, both available at the health food store. They stimulate glycosaminoglycan formation, which in turn builds up hyaline cartilage, the enamel-like coating of the bone within the joint.

An oral desensitization to treat arthritis

Can joint health be helped in other ways? New answers have emerged. In the past, people who were suffering with colds or flus were consuming a steaming bowl of chicken soup. It should be mentioned that colds and flus are also an inflammatory reaction that occurs within the body.

While a lot of health professionals dismissed this home remedy as old-fashioned and useless, a team of scientist from the University of Nebraska decided to research the matter a bit closer. They discovered that it was not the vegetables, but a component in the chicken broth that showed anti-inflammatory activity. The chicken derived type II collagen functions to regulate the immune system, so it stops attacking proteins normally found in healthy joint cartilage. Results of a pilot study have shown remarkable results. A dose of 40 mg per day of un-denatured type II collagen (UC-II) showed a significant reduction in pain and swelling from arthritis. It also yielded good results in terms of relief from joint pain and stiffness due to exercise.

Animal studies on dogs and horses were also conducted demonstrating that both animal groups that frequently suffer from arthritis got significant relief. Human clinical trials with UC-II showed similar effectiveness.

A group of patients suffering from knee osteoarthritis were treated with the supplement for 90 days. 33% experienced a reduction in their osteoarthritis. The pain was reduced by 40%. Those patients who received the standard treatment without any supplement had 15.4% less pain. Joint function was improved by 20% in the group taking the supplement, while only 6% of improvement was seen in the patient group receiving standard care.

Healthy patients were also assessed who did not suffer of arthritis, but received the supplement to evaluate how they would fare with exercise-induced knee pain. They were treated with a daily dose of 40 mg of UC-II. After day 90 and 120 the group that was treated with the supplement could exercise for significantly longer periods before experiencing joint pain. They also recovered faster after joint pain. The placebo group who swallowed “fake pills” did not show these changes. When knee joint flexibility was examined, the supplement group had significant increases in their knee mobility, but no luck for the placebo group!

Numerous toxicological essays have evaluated the supplement. There is no oral toxicity. No mutations in bacterial genomes have been observed, which is a standard screen to ensure that a substance is non-carcinogenic.

The UC-II supplement works through a mechanism, where the immune system is desensitized by ways of oral administration. It reverses T-cell attacks on exposed cartilage. If our joints are healthy and intact, we normally do not react to our own cartilage. But the protective barrier between blood and cartilage diminishes as we age. Early treatment with UC-II may help induce immune tolerance even in healthy individuals and protect them from reactions of the immune system to their own cartilage.

Conclusion

The supplementation with UC-II offers a different approach to modify joint inflammation of arthritis. Standard treatment at this point consists mainly of symptomatic treatment. Side effects to the drugs can be serious, if they are used on a long-term basis. Few are tolerable to modify the course of the disease.

With the UC-II supplement the root of the disease (autoimmune disease) is being addressed, and relief can be achieved within a few weeks of starting it. With life style changes that were mentioned before and this supplement it is possible to fight back against arthritis!

More information on arthritis: http://nethealthbook.com/arthritis/

References

1. “Osteoarthritis. Basic information”. Ferri: Ferri’s Clinical Advisor 2014, 1st ed., © 2013 Mosby

2.  Rakel: Integrative Medicine, 3rd ed., 2012 Saunders

Last edited Nov. 7, 2014

Apr
01
2013

My Experience With Cancer Research

April is cancer awareness and fundraising month. I thought it would be interesting to analyze what’s going on behind the scenes of cancer research. I was a cancer researcher for over 3 years at the Ontario Cancer Institute (OCI) from 1972 to 1975 and I will share some insider experiences here.

1. Publish or perish

We were told by our supervisors to “publish or perish”. In other words all the experiments we did needed to fit into the larger picture the group was working on, and the results should be different and interesting and most of all publishable. There had to be significant differences between experimental groups and controls, so that publishers of medical journals would accept them for publication. There were often two or three manuscript revisions where the content was “massaged” (proper wording, comparing or opposing the results with other publications) so that it was considered “publishable”.

2. Fund raising awareness

One of the major fund sources for cancer research in Canada was the MRC (Medical Research Council of Canada), which has been replaced by the Canadian Institutes of Health Research (CIHR) in 2000. Without money there is no cancer research, so everybody was aware of the policies and expectations of the fund source.

3. Mouse model versus human tissue based research

I was working in the immunology section of the biophysics department, where basic medical research at the OCI is done. In this department much research had already been performed separating cell populations in a mouse model to determine what cell types were needed to initiate an immune response. The B cells in mammals are antibody-producing cells of the immune system that protect from viruses. T cells are thymus-processed cells that turn into killer cells, which can attack parasites and also cancer cells. I was working in this area. We did cell separation experiments where the cells were separated according to cell size and collected in vials. Subsequently remixing experiments were done to find out what cell types were needed to mount an immune response to a mouse tumor cell line as targets. I started questioning whether a mouse model would be the appropriate model to study human cancer biology. But this was not met with approval, as the “holy grail” was that what worked in a mouse model (mouse mammalian cells) should also work in the human situation (human mammalian cells).

My Experience With Cancer Research

My Experience With Cancer Research

4. Non-medical researchers in cancer research

This is a thorny issue, but a reality. My immediate supervisor in cancer research had a PHD in physics, which was perfect for sorting out density issues for cell separation experiments. His colleague and co-chair of the immunology department had a PHD in biology, which was a good fit for mouse experiments. Both of them felt somewhat insecure when I asked probing questions about relevance of mouse experiments for the human cancer condition. As I needed to publish my experiments, which were done under the supervision of these supervisors, I had to quiet down and concentrate on the mouse model the team was working on. For a while this could even be exciting as we were studying the cell interaction between macrophages and T cells to mount a cell-mediated immune response.

5. Regulation of the cancer research industry

After playing with cell cultures for 2 ½ years it was time for me to reach out to get a job in the cancer research field or else go back to medicine. In1975 there was no equal opportunity legislation in place that would have protected me as a landed immigrant from discrimination. The reality in 1975 was that only Canadian born physicians who attended a Medical School in Canada could become a director of a cancer research facility in Canada. The rules for me (I had left Germany right after my rotating internship) were that I had to go through further medical training and pass the Canadian licensing exam (LMCC), which I did eventually at McMaster University in Hamilton, Ontario. One final attempt to shed light on my options was an interview with the “big boss” at the Ontario Cancer Institute at the time, a physician cancer researcher, Dr. Ernest A. McCulloch, for whom I had great respect. He was a sharp thinker and had vision, and he was a fellow physician. I asked him what he would do on the long-term, if he was in my place. He said that in the long-term with my medical background it would be a lot more satisfying for me to get back into medicine and practice medicine. However, he wanted me to go on for another 1 or 2 years and publish more papers together with my supervisors. I decided for myself right there that I would leave cancer research and I prepared quietly for my exit. Within a short time I got a position to work as an intern at a hospital at McMaster University and in the spring of 1978 I passed the LMCC (licensing) exam. As a fully licensed physician in Canada I was no longer interested in “slave work” in cancer research. I also left the cold winters of Ontario behind and went to the west, to British Columbia.

6. Future vision of medical cancer research

Research has come a long way. Recently I came across a new breast cancer protocol, which is non-toxic, without chemotherapy and without radiation. It is so unconventional that the US research team, aware of the politics in the US, decided to do the initial trials in the Caribbean. I wrote a blog about this new breast cancer treatment protocol, which I believe will become the future standard for breast cancer therapy and perhaps even for other cancers.

In Germany and Switzerland there is an alternative breast cancer treatment with a non-toxic plant-based chemotherapy involving mistletoe extracts. It has a dual action, namely a chemotherapeutic effect, but at the same time an immune system stimulating effect. Here is a study going back to 2001, which is still relevant. There was a 40% long-term survival benefit in the Iscador group when compared to a control group without treatment. Normally, oncologists would jump at such an excellent chemotherapeutic agent as even chemotherapeutic agents that show a 25% beneficial survival effect would be considered a good treatment option. However, as the medication is a simple mistletoe extract and cannot be patented, Big Pharma is not interested in marketing this. As a result cancer treatment protocols in Europe are significantly different from those in North America.

In the future I would expect that non-toxic treatment methods for any type of cancer will be more successful than any chemotherapeutic or radiation treatment approaches as both interfere with the immune function, which is what will kill the patient at the end. As cancer is a disease where the immune system fails, cancer patients need to be shown how to stimulate their immune system, as this is the only thing, which can control cancer on the long-term.

You will hear more about epigenetic switches as often a cancer producing substance will turn off a gene (epigenetic switch) and this causes cancer.  Remove what throws that switch into the off position or introduce a healing agent that resets the switch and the cancer will get eliminated.

7. Prevention of cancer

The most powerful cancer preventatives are found in herbs, spices, vitamins and minerals. Did you know that curcumin, derived from the Indian spice turmeric, prevents a number of cancers? Similarly, vitamin D3 at high enough doses (4000 to 5000 IU per day) has been shown to prevent cancers. Linus Pauling showed long time ago that vitamin C at high enough dose would be an antioxidant and would stimulate the immune system and thereby be a cancer preventative. It works together with a detoxifying antioxidant, glutathione in the liver to neutralize any free radicals, which are aggressive chemicals that cause cancer. There are many other vitamins and minerals that I have explained elsewhere, which are needed together with organic food to give you the building blocks for a stable cell metabolism. This in turn will strengthen the immune system to defend you from toxins of the environment. A simple step like a daily exercise routine can cut your cancer risk down to 50% compared to those who elect to not exercise. Did I mention the importance of quitting smoking and cutting out alcohol? The “quit smoking” part has been known for some time. I learnt about cancer being caused by smaller doses of alcoholic beverages over a long period of time at the Anti-Aging conference in Las Vegas in December 2011. First I thought it would be a big deal to quit alcohol entirely. But since I have quit the modest few drinks per month that I thought I would miss, I actually have not missed them at all! I strongly believe in cancer prevention, so quitting alcohol completely was only one small step in this overall objective. In view of the recent statement by the WHO that 70% of all deaths are caused by smoking and drinking of alcoholic beverages, it behooves us to change our lifestyles, if we are at all interested in a healthy long life.

Conclusion

From reading about cancer research now, nothing has changed in cancer research circles since the time when I was part of it. Basic cancer research involving animal experiments is necessary. But in my opinion cancer research should be more human-centered using human cell lines in culture and using clinical trials. Ultimately cancer research needs to invent and develop new non-toxic cancer therapies to cure cancer patients.

More on cancer in general and on specific cancers: http://nethealthbook.com/cancer-overview/

Last edited Nov. 6, 2014

Incoming search terms: