Feb
01
2014

Early Alcohol Use Will Result In Memory Loss Later In Life

Researchers found that heavy alcohol use in males during midlife paves the way to memory loss from dementia later in life.

I thought that this would be a good topic to review the effect of alcohol in general. Alcohol is a known cell poison, yet cardiologists keep on referring to the beneficial effects of that 1 glass of wine per day that will prolong your life. I will attempt to explain these diverse effects, where small amounts are supposed to be good for you while high amounts can be very damaging.

Review of the effects of alcohol

50% of the world population drinks alcohol, 10% to 20% have chronic alcoholism (Ref.1).  Just recently a Guardian news study was released showing that an astounding 25% of Russian men die before reaching the age of 55, compared to only 7% of men in the United kingdom and less than 1% of men in the US. The study looked at the effects of consuming large amounts of vodka.  There are about 10 million chronic alcoholics in the US. Chronic alcohol consumption leads to 100,000 deaths every year in the US. More than 50% of these deaths are from traffic accidents, the rest from medical problems caused by alcohol (Ref.1). Most of the alcohol gets detoxified through the liver cells and is metabolized into acetaldehyde. This involves the cytochrome P-450 system. That means that when a person also takes narcotics, sedatives or psychoactive drugs that are also metabolized through this liver enzyme system drugs and alcohol are taking much longer to be metabolized. This can lead to lethal overdoses that we hear about on TV all the time, hence the warning that you must not mix alcohol with drugs.

Early Alcohol Use Will Result In Memory Loss Later In Life

Early Alcohol Use Will Result In Memory Loss Later In Life

Alcohol is a cell and nerve poison. The most vulnerable organs in the body are the liver, brain, heart, pancreas, bone marrow and stomach. So, here are a number of conditions caused by drinking alcohol:

a)    Anemia: When a person drinks heavily and regularly anemia shows up in a blood test. Alcohol has a toxic effect on the bone marrow, which interferes with the production of red blood cells. But certain vitamins required by the bone marrow to manufacture red blood cells are often also missing in the diet of an alcoholic, which contributes to anemia as well.

b)    Cirrhosis of the liver develops in 10% to 20% of heavy drinkers. With cirrhosis part of the liver cells get replaced by fibrotic tissue and in advanced cases this can lead to a hepatic coma and death. Others are developing alcoholic hepatitis. This is an inflammation of the liver with fever and jaundice where the skin and eyeballs turn yellow. It is associated with severe abdominal pain.

c)    Gastritis: Alcoholic gastritis is common, but often undetected. The affected individual may just have stomach pains for a few days, or vomit food and/or blood in addition. With continued use of alcohol it may turn chronic. Alcoholic gastritis can turn into gastric ulcers with massive bleeding that often lead to death.

d)    Pancreatitis: The pancreas is a particularly vulnerable glandular tissue, which gets damaged by regular alcohol intake and with chronic alcohol intake gets partially replaced by fibrotic tissue causing the feared and painful chronic pancreatitis. This is a condition with vomiting and severe abdominal pains that can be unrelenting.

e)    High blood pressure, seizures, dementia, depression, heart irregularities and nerve damage:

You may ask yourself how all of these conditions would be reasonably under one heading. The heading for this is “nerve damage”. Let me explain: The sympathetic nerve is very sensitive to alcohol toxicity and when the sympathetic nerve fibers are damaged, you will develop high blood pressure. You see your physician, get blood pressure medication, but the pressure is difficult to control, if you continue to drink alcoholic beverages. It does not make sense to just add blood pressure pills and hope that this will cure your problem. Seizures are due to direct nerve damage in the more sensitive parts of the brain, which will cause these areas to produce extra electrical activities, which we call seizures. Again, just treating with anti-seizure medications is not the solution. Avoidance of alcohol is the other part of the treatment schedule. Dementia from heavy alcohol use is due to direct nerve atrophy in the brain. Our brain shrinks normally 1.9% to 2.8% per decade, depending on which research papers you read. But in the presence of heavy drinking the frontal lobe of the brain is particularly vulnerable to brain shrinkage.

As this publication shows, mild and moderate drinkers did not suffer more frontal lobe shrinkage than abstainers, but heavy drinkers had a 1.8-fold higher risk of frontal lobe shrinkage on average when compared to abstainers. It was calculated that alcohol had contributed 11.3% to that frontal lobe shrinkage.

The rest of the toxic effect on the nerve tissue explains why depression would develop. The frontal brain contains most of the serotonin producing nerve cells. When serotonin-producing nerve fibers get damaged, the body does not produce enough serotonin to prevent depression from setting in; GABA producing cells often also get damaged, which causes anxiety. It’s not good enough to just prescribe anxiolytic drugs to which the patient will get addicted. The whole person needs to be treated, and abstinence from alcohol has to be part of the program.

Heart irregularities (atrial fibrillation, ventricular fibrillation) can be life-threatening complications due to the toxic effect of alcohol on the nerve fibers within the heart muscle. Emergency physicians are aware of the connection of these conditions to alcohol consumption. Some people’s hearts are more sensitive to the effects of alcohol than others. The most common cause of temporary atrial fibrillation is excessive alcohol intake (holiday heart) according to Ref. 2.

Finally there is the effect of alcohol on nerves in the body. This explains that heavy alcohol consumers can come down with painful pins-and-needles sensations in their hands and feet or with numbness or loss of muscle strength. When the parasympathetic nervous system is affected embarrassing incontinence or constipation can result. Erectile dysfunction in men is also very common. Viagra and continuing to drink is not the solution.

f)      Gout: This painful formation of uric acid crystals in joints can be precipitated in sensitive individuals by consuming alcohol in combination with eating large helpings of beef. There may be a history of gout in the family. Treatment for this is to refrain from alcohol and avoid foods that are leading to uric acid production when ingested.

g)    Cancer: When the body detoxifies alcohol in the liver, the breakdown product is acetaldehyde, which is a known cancer producing substance. A whole array of cancers are known, which come from heavy, chronic alcohol consumption: cancers in the mouth, larynx, esophagus, stomach, pancreas, liver and colorectal cancer have all been linked to excessive alcohol intake.

h)    Cardiovascular disease: heart attacks and strokes can be caused particularly by binging; it is thought that binging makes platelets from the blood more sticky so they clump together and cause blood clots, which in turn leads to heart attacks and strokes.

i)      Infections: Alcohol weakens the immune system, which is another effect on the bone marrow similar to causing anemia, except that this is the toxic effect on the white blood cells and lymphocytes. Heavy alcohol consumers are more prone to pneumonia, to HIV, sexually transmitted diseases, and tuberculosis.

Cardiology view of preventative alcohol

Despite all of these hair raising toxic effects cardiologists have painted the rosy picture that 1 glass of wine for women and 2 glasses of wine for men per day will prevent heart disease. What is the true story here?

Ref.2 points out that there are about 100 prospective studies that confirm that there is an inverse relationship between mild to moderate alcohol consumption and “heart attack, ischemic stroke, peripheral vascular disease, sudden cardiac death, and death from all cardiovascular causes”. It describes further that the reduction of risk in these various studies was persistent and consisted of a 20% to 45% risk reduction. Using blood tests investigators have found that this is because of an increase of HDL cholesterol, reducing blood clotting, making platelets less sticky and reducing inflammation as evidenced by a reduction of the C-reactive protein. Further research has pinpointed that it is the phenols and resveratrol that are contained in alcoholic beverages that are responsible for the beneficial effects. The bad news is that three glasses of wine or more do the opposite, so does binge drinking. Unless you are extremely disciplined and never increase your allowed limit (1 drink for women, 2 drinks for men) you will CAUSE heart disease rather than PREVENT it (Ref.2). Some people have a family history of breast cancer or colon cancer and they should avoid alcohol altogether; also people coming from alcoholic families should avoid alcohol.

Conclusion

Where does this leave us with regard to prevention of heart attacks, strokes and hardening of the arteries in the legs (peripheral vascular disease)? If you are disciplined and stick to the limits, you could prevent 20% to 45% of cardiovascular risk. The brain study mentioned in the beginning of the blog would also confirm that there was no difference between dementia or brain shrinkage when mild to moderate drinkers were compared to abstainers over 10 years. What is not told by the wine industry is that the same effects that prevent cardiovascular disease in mild to moderate drinkers can also be achieved by natural means: exercising regularly will raise your protective HDL cholesterol; taking ginkgo biloba, flax seed and omega-3 fatty acids thins your blood and the platelets are getting less sticky; omega-3 reduces inflammation and resveratrol elongates telomeres making you live longer. At the A4M conference in Las Vegas in December 2011 there were three speakers who pointed out that even small amounts of alcohol will poison mitochondria of your cells and interfere with normal hormone action. This was enough to make me join those who abstain alcohol completely. One thing has not yet been investigated in long-term studies, namely how small effects of alcohol may affect the body over several decades and over an entire lifetime. Despite all the promises of interest groups that red wine is a trendy drink for those interested in heart health, the fundamental long-term studies are missing. What does a guy do with a healthy heart and a brain that is not functioning too well? I just do not want to be the guinea pig in that worldwide study.

More information on alcoholism: http://nethealthbook.com/drug-addiction/alcoholism/

References:

  1. Kumar: Robbins and Cotran: Pathologic Basis of Disease, Professional Edition, 8th ed. © 2009 Saunders
  2. Bonow: Braunwald’s Heart Disease – A Textbook of Cardiovascular Medicine, 9th ed. © 2011 Saunders

Last edited Nov. 7, 2014

May
18
2013

Treatment For Alzheimer’s Failed, But Prevention Succeeds

Recently another news story about a failed drug against Alzheimer’s disease (AD) went through the news media as shown in this link.

Donepezil, galantamine, rivastigmine and memantine are the most common drugs used to attempt to treat Alzheimer’s as this review explains. None of these drugs are a real breakthrough with regard to truly curing AD, as the drugs only achieve a few months of delay in the eventual deterioration of the AD patient’s symptoms. On the other hand there is an overwhelming accumulation of data in the last few years showing that many different factors can prevent AD and dementia. Below I am reviewing all these preventative factors and steps.

Genetic and epigenetic factors in Alzheimer’s disease

Early onset Alzheimer’s disease occurs between 30 and 60 years of age. It is due to a genetic predisposition (mutations on genes of chromosomes 1, 14 and 21). Only about 5% of all AD cases are caused this way. The remaining 95% of Alzheimer’s cases are due to late-onset Alzheimer’s disease. Here the causation is due to a combination of genetic, environmental and lifestyle factors. One genetic risk factor in this group is important, namely the apolipoprotein E gene (APOE), which is located on chromosome 19. There are several forms of APOE as this review explains. It also states that there is so much variation between the various APOE forms and even the worst form of this does not necessarily mean that the person who has this will come down with late-onset Alzheimer’s disease. So APOE is presently only used in research projects. Your doctor will only order genetic tests in people who have a strong family history of early onset AD.

There is another genetic marker, the CYP46 gene that was found to be present in some late-onset AD patients. If it is combined in a patient with the APOE gene, there is a much higher chance of developing AD as this review shows.

Epigenetic factors are probably more important than genetic factors for most cases of late-onset AD, as this review explains. Another review came to the same conclusion.

What are epigenetic factors? Exercising, replacing missing hormones, using a calorie restricted, only 15-20% fat containing diet; and taking supplements as listed below that will keep harmful genes in the “off” position and protective genes in the “on” position. Taking these preventative steps is probably more powerful than using any of the presently available medications mentioned above.

Treatment For Alzheimer’s Failed, But Prevention Succeeds

Treatment For Alzheimer’s Failed, But Prevention Succeeds

Exercise, diet, control blood pressure

As already mentioned, these are some of the powerful epigenetic factors that will prevent AD down the road. Controlling blood pressure has long been known to improve cognitive function. It is now evident that there seems to be a problem with microcirculation in brain tissue before it comes to neurodegenerative changes of AD and the underlying deficiency in nitric oxide production in the lining of the diseased arteries. Other research has shown that a lack of nitric oxide (NO) production is also the underlying problem with hypertension.

Green vegetables such as kale, spinach, also cabbage varieties and red beets are a source of nitric oxide and have also been shown to prevent AD at the same time.

Add to this exercise and you have a winning combination for the prevention of AD. You guessed right: exercise increases NO production from he lining of your arteries. When people age their lining of the arteries does not produce as much NO as in younger years. However, there is a supplement available, Neo40 Daily, that can be taken twice a day to compensate for this.

Here is another report about a 30% to 40% reduction in the incidence of AD when people do regular, simple exercises.

More good news about fruit and vegetables: tomatoes, watermelons, pink guava, pink grapefruit, papaya, apricot and other fruit all contain lycopenes, which have been shown to prevent AD.

Recently a new testing tool in combination with a PET scan of the brain has been developed, which may help the treating physicians to assess improvement or deterioration of an AD patient objectively using this method. However, this is still considered to be only a research tool at this time.

Supplements to prevent Alzheimer’s disease

The following brain-specific nutrients play a part in the prevention and treatment of AD (according to Ref.1):

1. B-vitamins: they are important to support the energy metabolism of brain cells.

2. Vitamin C: this has antioxidant properties and prevents brain cells and supportive glia cells from oxidizing.

3. Vitamin E in the form of mixed tocopherols: together with vitamin C has been shown to prevent Alzheimer’s disease

4. Phosphatidylserine (PS), with an intake of up to 300mg/day: counteracts and prevents memory loss.

5. Coenzyme Q10 (ubiquinone), 100mg/day (it would be safe to take 400 mg per day, which is also cardio protective): stabilizes the mitochondria of brain cells and heart muscle cells. It is a powerful neuroprotective agent and supports ATP production (energy metabolism of brain cells).

6. Ginkgo (Ginkgo biloba), at a dose up to 240mg/day: increases micro vascular circulation, neutralizes free radicals from oxidation and improves short-term memory.

7. Omega-3 fatty acid and DHA, 1500mg/day: has anti-inflammatory properties.

Other nutrients that hold promise are:

8. Huperzine A, 100 to 200mg/day: natural anticholinesterase inhibitor, derived from the Chinese club moss, surpasses donezepil according to studies by doctors in China

9. Vinpocetine, 2.5 to 10mg/day: comes from the periwinkle plant, increases cerebral blood flow and stimulates brain cell metabolism

10. Turmeric extract (curcumin) is very beneficial in reducing tau protein deposits in AD.

All these statements and dosages are cited from Ref.1.

Hormones to prevent Alzheimer’s disease

According to Ref. 1 there are certain hormones that can prevent AD: DHEA, pregnenolone, estrogen (bioidentical estrogen only).

  1. DHEA is persistently low in AD patients and replacement with DHEA at 50 mg daily has shown improvements in muscle strength and energy of AD patients.
  2. Pregnenolone has been shown to be a powerful memory enhancer in animals and humans alike.
  3. Estrogen, if taken as bioidentical estrogen cream (Bi-Est) can improve brain function. Estrogen is a strong epigenetic switch that keeps a woman mentally younger for longer, but has to be balanced with bioidentical progesterone cream to prevent breast cancer and uterine cancer. A study showed that estrogen replacement early in menopause will cut down on the heart attack rates, but it is also known, particularly when given as bioidentical hormone cream to prevent AD.
  4. In addition progesterone has been described to be of value in the aging woman to preserve brain metabolism.
  5. Testosterone is known to protect against Alzheimer’s disease in the aging male.
  6. Melatonin at a starting dose of 1 mg to 3 mg at bedtime often helps to restore the disturbed sleep pattern, but also augments the effects of the other hormones (Ref.1).

Removal of toxins, particularly mercury

Mercury is extremely toxic in minute amounts and affects brain cells preferentially. Intravenous vitamin C/glutathione treatments as described in this blog will remove mercury from your system including the brain.

It may take 20 to 30 such treatments in weekly intervals followed by a maintenance program every two to three weeks to remove mercury from the body.

Other heavy metals can accumulate in the brain as well and must be removed. This is described here in more detail.

Conclusion

There have been major breakthroughs in prevention of Alzheimer’s disease and dementia over the past few years, many unnoticed by the media. The search is still on for an effective drug that would treat AD when it is present. However, this may be 10 or 15 years away and we cannot afford to wait that long. Instead I suggest that people should embrace the concept of preventing AD by using as many of the factors described above. Both at the 2011 and the 2012 Anti-Aging Conferences in Las Vegas several speakers pointed out that a combination of several preventative factors will be much more effective than one factor alone and they estimated that about 80% of AD could be prevented this way.

References

Ref.1. Rakel: Integrative Medicine, 3rd ed., Copyright © 2012 Saunders, An Imprint of Elsevier. Chapter 9 – Alzheimer Disease. Integrative Medicine: “Kirtan Kriya, Telomeres, and Prevention of Alzheimer Disease”, by Dharma Singh Khalsa, MD

Last edited Dec. 18, 2014

Jun
01
2005

Mixing Medications With Herbs Spells Trouble

It is generally accepted that prescription medications may have side effects, and there is also the belief that herbal medicines are more desirable, as they cannot possibly have dangerous side effects.
An anonymous survey of rheumatology patients in the United Kingdom shed some light into the use of over-the-counter herbal remedies: nearly half of the patients (40%) had used herbal remedies in the past six month in the hope of enhancing their health. Trouble started for one in ten patients who took an herbal remedy that could negatively interfere with their traditional medicines. Dr. Wendy Holden of the Nuffield Orthopedic Center in Oxford, the author of this study, reported that the risk is especially high for rheumatology patients who take anti-inflammatory drugs in combination with herbs. The traditional medicines do have a risk for gastrointestinal bleeding, however the additions of herbs like ginkgo biloba, ginger, devil’s claw and even garlic can increase the anticoagulant effect and bleeding may be the consequence. Some patients who reported the use of Echinacea were increasing the risk of a liver disease. Of those patients who took a potentially harmful treatment combination 92% were unaware of the risk. Less than half had mentioned to their physicians that they used herbal medications in combination with their prescription medications.

Mixing Medications With Herbs Spells Trouble

Mixing Medications With Herbs Spells Trouble

Herbal medicines are powerful and their effects and side effects have to be taken into consideration. It is important for the patient to mention every medication, even the seemingly harmless over-the-counter herbal remedies, to the treating physician, as the mix may be not a winning combination, but one that is hazardous.

Reference: The Medical Post, May 10, 2005, page 8

Last edited December 12, 2012