Sep
02
2017

Resveratrol Effective In Humans

Resveratrol has been labeled a powerful antioxidant; but is resveratrol effective in humans?

  1. Quack watch says: don’t buy into the hype that resveratrol is effective in humans.
  2. WebMD claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive benefits.

Despite these recommendations the following evidence supports that resveratrol is indeed effective in humans.

Resveratrol effective in humans: high blood pressure patients

A 2017 study of high blood pressure patients examined resveratrol supplementation with two groups, 46 stage 1 hypertension patients and 51 stage 2 hypertension patients. Stage I hypertension had a systolic blood pressure of 140–159 mmHg and a diastolic blood pressure of 90–99 mmHg. Stage 2 hypertension was defined as a systolic blood pressure of 160–179 mmHg and a diastolic blood pressure of 100–109 mmHg. Each subgroup was divided into two groups, one receiving regular antihypertensive medication, and the other group receiving regular antihypertensive medication plus Evelor. Evelor is a micronized formulation of resveratrol. The trial lasted two years. The purpose of the trial was to determine the effect of resveratrol, which was added to the regular antihypertensive medication (or not) to see whether it had blood pressure lowering effects. The interesting result showed that the resveratrol addition was sufficient to bring the blood pressure down to normal levels with only one antihypertensive drug. The control group without resveratrol needed two or three drugs to get the blood pressure under control. In addition, liver function tests showed that resveratrol normalized negative side effects of the antihypertensive drug on the liver. Both liver enzymes, glutamate-pyruvate transaminase (SGPT) and gamma-glutamyl transferase (Gamma-GT) were normal in the group where resveratrol had been added.

Resveratrol effective in humans: diabetes patients

Resveratrol helps diabetes patients. Resveratrol, the bioflavonoid from red  wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol was 1000 to 5000 mg.

Resveratrol effective in humans: improves bone density

Resveratrol improves bone density in men: 66 middle-aged obese men with an average age of 49.3 years and a mean body mass index of 33.7 were recruited for this randomized, double blind, placebo-controlled trial. The purpose was to study whether there would be changes in bone turnover markers (LDH, an enzyme involved in bone turnover), but also whether bone mineral density (BMD) would increase. Resveratrol was given to a high group (1000 mg per day), a low group (150 mg) and a placebo (fake pills) were given to the third group. The end point was an elevation of the bone alkaline phosphatase (BAP). This was measured in the beginning of the study and at 4, 8 and 16 weeks. The high group of resveratrol had a 16% increase of the BAP throughout the study and a 2.6% in lumbar spine bone density (measured by a trabecular volumetric method). The low resveratrol group showed no bone restoring effect. MJ Ornstrup, MD, the lead investigator said that this was the first time that a clinical team has proven that resveratrol can potentially be used as an anti-osteoporosis drug in humans. She added that resveratrol appears to stimulate bone-forming cells within the body.

Resveratrol effective in humans: anti-aging effects

The Nurses’ Health Study showed that both a Mediterranean diet and resveratrol can elongate telomeres.

The fact that you can have a longer life with a Mediterranean diet is known for some time. But now a study has shown that the reason for a longer life is the fact that telomeres get elongated from the Mediterranean diet. Telomeres are the caps at the end of chromosomes, and they get shorter with each cell division. This is the normal aging process.

The finding of elongated telomeres comes from the ongoing Nurses’ Health Study that started enrolling subjects in 1976. At that time 121 700 nurses from 11states enrolled in the study. In 1980 diet sheets were used to determine who was adhering to a Mediterranean diet. 4676 middle-aged participants were identified to qualify for this study. This diet consists of a combination of vegetables, legumes, fruits, nuts, grains and olive oil. Fish and lean meats were also consumed. The control group followed a regular diet. Between 1989 and 1990 blood tests were obtained to measure telomere length in white blood cells. It is known that smoking, stress and inflammation shortens telomeres. The lead author Marta Crous-Bou stated that overall healthy eating was associated with longer telomeres compared to the control group. But the strongest association was found in women who adhered to the Mediterranean diet when compared to the controls. For the best diet adherence score there was a 4.5 year longer life expectancy due to slowed telomere shortening.

Longer telomeres have been found to be associated with the lowest risk to develop chronic diseases and the highest probability of an increased life span. I have reviewed the importance of lifestyle factors in this blog where I pointed out that Dr. Chang found a whole host of factors that can elongate telomeres by stimulating telomerase. It has been shown in humans that increased physical activity elongated telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen and progesterone replacement in aging women and testosterone in aging men, as well as relaxation techniques like yoga and meditation are also elongating telomeres.

Aging is due to shortening of telomeres. Elongation of telomeres by resveratrol leads to prolonged life (or anti-aging).

Resveratrol effective in humans: resveratrol and cancer

As this overview shows, it seems that several mechanisms of action give resveratrol the power to be an anticancer agent. Resveratrol is anti-proliferative and has anti-angiogenesis mechanisms. In addition resveratrol stimulates apoptosis, which is programmed cell death. All these actions together help resveratrol to have anticancer properties. Resveratrol can also be used in combination with other cancer treatments, which improves survival figures. As the link above explains, more cancer clinical trials with a variety of cancers and larger patient numbers are required, but many smaller clinical trials have already been very successful showing efficacy of resveratrol as a chemotherapeutic agent.

In this 2015 publication about malignancies and resveratrol an overview is given about the use of resveratrol and cancer treatment. It summarizes that the development of cancer is a multifactorial process that involves the 3 stages of initiation, promotion and progression. One of the cancer promoting factors is chronic inflammation. Resveratrol has been shown to be anti-inflammatory. At this point it is not clear how the animal experiments will translate into the human situation. More clinical observations are necessary.

Resveratrol effective in humans: cardiovascular disease

Resveratrol has beneficial effects on preventing hardening of the arteries, diabetes, various cancers and inflammatory conditions like Crohn’s disease and arthritis. As this link explains resveratrol also stimulates the antiaging gene SIRT1 by 13-fold. This confirms the anti-aging effect of resveratrol. This 2012 study has also confirmed that resveratrol from red wine is what is responsible for the “French paradox” (longer life expectancy despite high saturated fat intake).

Resveratrol effective in humans: polycystic ovarian syndrome 

Polycystic ovarian syndrome could be significantly healed with resveratrol in a randomized, double blind, placebo-controlled trial. It involved 30 subjects who completed the trial. 1500 mg of resveratrol or placebo were administered daily for 3 months. Serum total testosterone was decreased by 23.1% at the end of 3 months in the experimental group versus the placebo group. There was also a decrease of dehydroepiandrosterone sulfate of 22.2%. Fasting insulin level was reduced by 31.8%. At the same time insulin sensitivity was increased by 66.3%. The authors concluded that resveratrol had significantly reduced ovarian and adrenal gland male hormones (androgens). This may be in part from the drop in insulin levels and the increase of insulin sensitivity.

Resveratrol effective in humans: anti-arteriosclerotic effects in diabetics

A double blind, randomized, placebo-controlled study was done on 50 diabetics. The cardio-ankle vascular index (CAVI) was used to determine arterial stiffness. The purpose of this study was to determine the effect of resveratrol on the stiffness of arteries in a group of diabetics and compare this to a placebo. Diabetics are known to have premature hardening of the arteries (arteriosclerotic changes). After 12 weeks of taking 100 mg of resveratrol per day there was a significant reduction in arterial stiffness in the experimental group, but not in the placebo group. Blood pressure also decreased by 5 mm mercury (systolic) in the experimental group.

Resveratrol effective in humans: ulcerative colitis patients

56 patients with mild to moderate ulcerative colitis received 500 mg of resveratrol or placebo and were observed for 6 weeks. This was a randomized, double blind, placebo-controlled pilot study. Bowel disease questionnaires were used to assess the bowel disease activity before and after the treatment. The resveratrol group decreased the disease activity significantly, but it also increased their quality of life. Blood tests showed that this improvement occurred as a result of reducing oxidative stress by resveratrol.

Resveratrol effective in humans: Alzheimer’s disease prevention

Here is a study where 52 Alzheimer’s patients were divided into two groups; one group was given 200 mg of resveratrol for a number of weeks, the other group placebo pills. There was a significant improvement in memory tests in the resveratrol group and functional MRI scans showed better functional connectivity in the hippocampi of the subjects. It is known that the hippocampus is the seat for short-term memory, which is lost in Alzheimer’s patients.

Resveratrol Effective In Humans

Resveratrol Effective In Humans

Conclusion

Resveratrol has a long history of showing evidence of improving health. It does so by countering oxidation of LDL cholesterol, which lessens hardening of arteries. This prevents heart attacks and strokes. Resveratrol is also a powerful anti-inflammatory, which helps patients with diabetes, with Crohn’s disease and arthritis. There is even a cancer preventing effect of resveratrol because of anti-proliferative and anti-angiogenesis effects as well as stimulating apoptosis. Because of these combined anticancer properties resveratrol is a chemotherapeutic agent that can be combined with conventional anticancer drugs.

There are enough randomized, double blind, placebo-controlled trials in humans to show that resveratrol is effective in preventing and treating several disease conditions. The medical establishment claims that there would not be enough medical evidence to say that the average person should supplement with resveratrol to receive health benefits. After my review outlined above I come to the opposite conclusion. It is quite clear that resveratrol has several important healing properties. It can improve diabetes; prevent hardening of arteries, lower blood pressure, attack osteoporosis and prevent Alzheimer’s disease. I have been taking 500 mg of resveratrol daily for years. It has not harmed me.

Incoming search terms:

May
20
2017

Prevention Of Telomere Shortening

Dr. Mark Rosenberg gave a talk on prevention of telomere shortening. This was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The detailed title was: “The Clinical Value of Telomere Testing”.

What are telomeres?

Telomeres are the caps at the end of chromosomes. They are very important in the aging process. Prematurely shortened telomeres are linked closely to all major diseases like cardiovascular disease, cancer, diabetes and more. Telomeres are also a measure of the aging process. Aging occurs due to a decrease of the number of cells in organs and/or because of a lack of functioning of these organs. Telomeres get shortened every time a cell divides. But when the telomeres are used up, there comes a time when cells can no longer divide. These cells become senescent cells or they enter apoptosis (programmed cell death).

The senescent cells can become a problem when they get transformed into cancer cells and their telomeres lengthen again. These cancer cells divide rapidly and this can become the reason why cancer patients to die.

What is the significance of telomeres?

Telomere dysfunction is the first sign that the telomeres are getting shorter in a person compared to the average telomere length in a comparable age group. This is not only important for aging, but also has clinical implications. The shorter telomeres are, the higher the risk for cardiovascular disease. Telomere length also provides prognostic information about the mortality risk (risk of dying) with type 2 diabetes and for many cancers. Many physicians incorporate a telomere blood test into periodic health checks, if the patient can afford it.

Interventions that help telomere length

Here are a number of things we can do to lengthen our telomeres.

  1. Rosenberg mentioned that the strongest effect on telomere lengthening comes from caloric restriction and weight loss. 80 years ago they showed at the Cornell University that rats put on calorie restriction had a 30% increase in their mean and maximum lifespan. Many research papers have confirmed that the same is true in man and that the common denominator is telomere lengthening.
  2. Next are regular physical activity, meditation, reduction of alcohol consumption and stopping to smoke.
  3. Taking antioxidants and omega-3 fatty acids regularly will also lengthen telomeres.
  4. Improving one’s dietary pattern by adopting a Mediterranean type diet that contains cold-pressed, virgin olive oil.
  5. Telomerase activators. Here is some background on the TA-65 telomerase activator, which is based on Chinese medicine. A one year trial was completed with 250 units and 1000 units of TA-65 per day. The lower dose (250 units) showed effective telomere lengthening, while the placebo dose did not. The 1000 unit dose did not show statistical significance.

Should you wish to take TA-65, only take 250 units per day, not more.

Cancer and telomeres

There is a strong correlation between cancer and telomere shortening. When cells are at the brink of dying toward the end of their life cycle the telomeres get shorter and shorter. This is the point where the cells can turn malignant. Certain genetic abnormalities help the malignant transformation, like 11q or 17q deletions or a p53-dependent apoptosis response. Once cancer cells have established themselves they activate telomerase in 85% of cases. In the remaining 15% of cancer cases telomeres are activated through telomerase-independent mechanisms. Here are a few examples.

CLL

CLL stands for chronic lymphocytic leukemia. It is a disease of the aging population. At age 90 people’s bone marrow cells have a telomere length of only 50% of the length at birth. This is the reason that in older age CLL is more common. Researchers observed a population segment and found that the shorter telomeres were, the poorer the overall prognosis and overall survival for CLL was.

Lung cancer

In patients with non-small cell lung cancer the telomerase activity was examined. When telomerase activity was present, the 5-year survival was only 55%. When telomerase activity was absent, the prognosis was 90% survival after 5 years.

Prostate cancer

  1. Telomere shortening in stromal cells was found to be associated with prostate cancer risk. Men with shorter telomere length in stromal cells had a 266% higher risk of death compared to men with normal telomere length.
  2. Another study took blood samples and determined the telomere length in lymphocytes (the immune cells). Those men who came down with prostate cancer within a year after the blood sample was taken had short telomeres. The risk for prostate cancer in these patients was 355% higher than in the prostate cancer negative controls.

Yet another study looked at surgical tissue samples from 596 men that

Underwent surgery for clinically localized prostate cancer. Patients whose samples showed variable telomere lengths in prostate cancer cells and shorter telomeres compared to prostate samples with less variable telomere length and longer telomeres had a much poorer prognosis. They had 8-times the risk to progress to lethal prostate cancer. And they had 14-times the risk of dying from their prostate cancer.

Breast cancer

Breast cancer is diverse and consists of cases that are genetically inherited (BRCA1 and BRCA2), but there are also cases where the cancer is local or more advanced (staging). In families with mutated BRCA1 and BRCA2 telomeres are significantly shorter than in spontaneous breast cancer. Increased telomerase activity in breast cancer cases is directly related to how invasive and aggressive the breast cancer is.

  1. One study was shown where blood leukocytes were analyzed for telomere length in 52 patients with breast cancer versus 47 control patients. Average telomere length was significantly shorter in patients with a more advanced stage of breast cancer than in early breast cancer. Mutated HER patients had the shortest telomeres. It follows from this that checking for the HER status and blood telomere testing adds to the knowledge of potential cancer development and prognosis.
  2. Short telomere length was associated with larger breast tumors, more lymph node metastases and more vascular invasion. More aggressive breast cancer cells have higher telomerase activity. More than 90% of triple negative breast cancers have short telomeres.

CNS disorders and telomeres

Dr. Rosenberg presented evidence that shorter telomeres are associated with dementia. But dementias with Lewy bodies and Alzheimer’s disease are also linked to short leukocyte telomeres. The length of blood telomeres predicts how well stroke patients will do and how people with depression will respond to antidepressants.

Cardiovascular disease and telomeres

Our blood pressure is kept constant through the renin-angiotensin-aldosterone system. When this system is not stable, our blood pressure shoots up and causes cardiovascular disease. This is tough for the heart, as it has to pump harder against a higher-pressure gradient. A study of 1203 individuals was examining the connection between leukocyte telomere length and renin, aldosterone and angiotensin II activity. It concluded that oxidative stress and inflammatory responses affect the telomere length of leukocytes and that the more stress there is in the renin-angiotensin-aldosterone system, the more cardiovascular disease develops. The conclusion of the study was that the overall cardiovascular stress leads to shortening of leukocyte telomeres.

Prevention Of Telomere Shortening

Prevention Of Telomere Shortening

Conclusion

Telomere length testing from a simple blood test will become a more important test in the future as hopefully the cost comes down (currently about 300$). It can predict the general aging status by comparing a single case to the general telomere length of the public. But it can also predict the cancer risk, risk for mental disease and cognitive deficits (Alzheimer’s disease). In addition your cardiovascular status is also globally assessed with this test. What can be done, if the test comes back with short telomeres?

It allows you to change your lifestyle and adopt a healthy diet. You can exercise regularly, take antioxidants and meditate. There are even telomerase activators that are gradually becoming more known. They lengthen the telomeres. The cost of telomerase activators will likely still be a problem for some time. All in all telomere length tests are here to stay, but effective intervention at this point is largely limited to healthy lifestyle choices. This is good news: healthy lifestyle choices like non-smoking, exercise and avoiding non-processed foods are either free or have a reasonable price tag. Telomerase activators are big business and at this point not really affordable!

Incoming search terms:

Apr
22
2017

Only Moderate Alcohol Consumption Benefits Your Heart

A new study from England finds that only moderate alcohol consumption benefits your heart. The study was released on March 22, 2017 in Great Britain. 1.937 million people (51% women, 49% men) had participated in this investigation over 6 years. The lead author, Dr. Steven Bell is a genetic epidemiologist. He said that this study was done to clear up some of the confusion from previous studies. He wondered why the control group without alcohol exposure had more cardiac problems than the moderate group. It did make sense though, that the high alcohol group had worse cardiac problems.

But he and researchers from Cambridge University and University College London did this study to get more detail. They wanted to know why the current non-drinking group used as a control was not looked at more carefully. It consisted of a mix of lifelong abstainers; people who drank formerly, but then gave it up. And the other group was those who drink on an occasional basis.

With this in mind the researchers designed their study. They also used also larger numbers to increase the reliability of the study.

Details of English study

The data comes from the Clinical Practice Research Datalink providing anonymous patient records from general practices in England. The patients upon entry into the study had to be older than 30 years, but have no evidence of cardiovascular disease. A total of 1,937,360 patients qualified to be part of the study.

Based on patients’ records and patients recollections people, researchers looked at 5 classes of drinkers:

  • Non-drinkers (14.3%)
  • Former or ex-drinkers (stopped drinking at one point, 3.7%)
  • Occasional drinkers (drinking rarely, 11.9%)
  • Moderate drinkers (drinking within sensible limits, 61.7%)
  • Heavy drinkers (hazardous alcohol use, 8.4%)

The end point of the study researchers concentrated on the frequency of cardiovascular diseases like angina, heart attack, sudden cardiac death, stroke, peripheral arterial disease, abdominal aortic aneurysm and others. I only listed 6 of the 12 cardiovascular diagnoses as otherwise it would get too technical.

More information: Most study participants were non-smokers, their BMI was within normal limits, and they also did not have diabetes.

Findings of the study

There were significant differences among subclasses of alcohol consumption and the development of cardiovascular diseases over 6 years.

  1. The findings were in line with a number of previous similar studies that showed a U-type dose response curve between developing cardiovascular diseases and alcohol consumption. The group of non-drinkers (where former and occasional drinkers were removed) often had a 20% to 56% increased risk of developing cardiovascular disease, while moderate drinkers had no added risk.
  2. On the other hand the heavy drinkers were at risk of developing cardiac arrest (50% increased risk) or heart failure (22% increased risk). A death from a sudden heart attack occurred in heavy drinkers with a risk of 21% increased risk. A former drinker had a 40% increased risk for this, but a non-drinker a risk of 56% increased risk!
  3. A non-drinker had a 32% increased risk of getting a regular heart attack, a former drinker had a 31% increased risk, an occasional drinker 14%, a moderate drinker no added risk, and a heavy drinker had a 12% reduced risk! This seemed to show that drinking alcohol keeps the coronary arteries open and clean. I have had pathology demonstrations with Professor Dr. Adalbert Bohle at Tübingen University during my medical training in 1969. At that time he pointed out how clear and wide open the coronary arteries were in chronic alcoholics. It was not heart disease that killed those patients; they had died from end stage liver cirrhosis, and we saw pathological slides of that.
  4. Heavy drinkers get more ischemic strokes (33% increased risk) and more intracerebral hemorrhages (37% increased risk).
  5. Obstruction of blood vessels in the lower legs (peripheral arterial disease) is common with heavy drinkers (35% increased risk) and even former drinkers (32% increased risk). Non-drinkers have a 22% increased risk while moderate drinkers have a 0% risk (no increased risk).
  6. There was no association between heavy drinking and aortic aneurysm. On the other hand, non-drinkers (32% increased risk) and former drinkers (23% increased risk) showed an increased risk of aortic aneurysm formation.

Other effects of alcohol consumption

The study above did not take into consideration that alcohol consumption has many other consequences beside cardiovascular effects. One for instance is the effect on the brain and the increase of serious car accidents. Another effect is the causation of cancer.

The American Cancer Society clearly states that alcohol consumption has been causatively associated with the following cancers.

  • Cancer of the mouth
  • Cancer of the pharynx (throat)
  • Cancer of the larynx (voice box)
  • Cancer of the esophagus
  • Cancer of the liver
  • Cancer of the breast
  • Cancer of the colon
  • Alcohol also plays a role with cancer of the pancreas

Many studies have shown a dose-response curve between alcohol consumed and the development of these cancers. In other words there is never a safe low dose, below which no cancer would be caused over time.

These authors conducted a metaanalysis of 16 prospective cohort studies including 6,300 patients. It showed that alcohol caused cancer of the colon and rectum. High intake of alcohol showed a 50% increased risk of causing colon cancer. With regard to rectal cancer the risk was 63% higher. In both cases the highest alcohol intake was compared to the lowest category of alcohol intake.

These authors concluded their discussion by pointing out that 6% of the worldwide cancer deaths are attributed to alcohol intake. They also stated that colorectal cancer risk increased by 50% in the heaviest alcohol users. Among the group of heavy drinkers the cancer death rate would likely be 9%. There would a reduction of mortality from cardiovascular disease by one third in middle and old age. The end result would be 6% mortality again; essentially there is no change.

No matter how you try to solve this equation, there is a risk of cancer deaths from exposure to alcohol. There is also a risk that heavy drinking can cause significant cardiovascular diseases mentioned.

Only moderate alcohol consumption benefits your heart

Only moderate alcohol consumption benefits your heart

Conclusion

Everything we do in life has consequences. With regard to drinking you know that accidents are more common in drinkers; with prolonged exposure to higher alcohol consumption you can get dementia. Moderate amounts appear to have significant protection from heart disease, but the risk for several cancers is not negligible. This point was not mentioned in the study I discussed in the beginning of my blog. In the latter part I included some data about cancer risks from alcohol consumption.

The paradox remains that non-consumption of alcohol is associated with a significant cardiovascular risk because of a U-shape dose response curve. Moderate alcohol use is associated with the lowest cardiovascular risk. The question is whether we can balance moderate drinking with staying in the low cancer risk area. The recommendation of 1 glass of wine for women and 2 glasses of wine for men has been confirmed by the above study. This is considered a healthy preventative dose with respect to cardiovascular risk. It is the official recommendation for cardiovascular disease prevention. The cancer literature clearly states that there is a small cancer risk from moderate alcohol intake. This is particularly true for the 8 cancers discussed.

Dr James Nicholls, the director of research and policy development at Alcohol Research UK had this to say. He pointed to the fact that there are other ways to prevent cardiovascular disease. For those who do not drink at present it would not make sense to take up drinking. You can strengthen your heart by starting a Mediterranean diet and starting to exercise regularly. The beneficial substance for your heart in red wine is known as resveratrol that can be taken as a supplement. Resveratrol has no side effects and does not have the cancer risk of an alcoholic drink. Dr. Nicholls added, “If you drink within the existing guidelines it is unlikely that alcohol will either lengthen or shorten your life.” It is really up to every individual to balance the wine glass with personal health!

Incoming search terms:

Jan
28
2017

Cardiovascular Disease And Inflammation

Dr. Mark Houston talked about cardiovascular disease and inflammation – “the evil twins”. He presented this lecture at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Dr. Houston is an associate clinical professor of medicine at the Vanderbilt University Medical School in Nashville, TN 37232.

New thinking about cardiovascular disease and inflammation

Dr. Houston pointed out that the old thinking about cardiovascular disease has to be replaced with the new thinking. Here are a number of points regarding the new thinking.

  1. Coronary heart disease and congestive heart failure are diseases of inflammation. They are also coupled with oxidative stress, vascular immune dysfunction and dysfunction of the mitochondria.
  2. In the past it was difficult to reduce these cardiovascular diseases. With the new thinking there are now new treatment approaches that help cure cardiovascular disease.
  3. The development of heart disease has a long history. Endothelial dysfunction predates coronary artery disease by many years. This is followed by vascular smooth muscle dysfunction. Inflammation develops and structural changes occur in the small and larger blood vessels with atheromatous deposits (plaques) and final occlusion, at which point you get a heart attack.

Canadian physician Sir William Osler has already stated more than 100 years ago “A man is as old as his blood vessels”.

The old thesis was that cholesterol would lead to deposits that close coronary blood vessels and cause heart attacks. Dr. Houston called this the “cholesterol-centric “ approach. The truth is that with conventional blood tests you are missing 50% of all the high-risk patients that are going to develop heart attacks. They are missing the ones that have chronic inflammation, but normal cholesterol levels.

What was not known in the past was that oxidative stress associated with normal aging can lead to chronic low-grade inflammation. This oxidative stress leads to mitochondrial DNA changes. Associated with it are biochemical changes that cause chronic inflammation, which in turn will affect the lining of the arteries. There is a metabolic change described in the literature as metabolic syndrome, which leads to high blood pressure, hardening of the arteries and eventually heart attacks and strokes. The key today is to include in screening tests all parameters that will predict who is at risk to develop a heart attack or not.

Blood tests to screen for cardiovascular disease and inflammation

Blood tests and health history should be checked for dyslipidemia, high blood pressure (hypertension), hyperglycemia, smoking, diabetes, homocysteinemia, obesity etc. Also, patients with high GGTP (gamma-glutamyl transferase) levels in the blood are more at risk to develop diabetes. This in turn leads to inflammation of the arterial wall and heart attacks. There are 25 top risk factors that are associated with all causes for heart attacks.

Briefly, apart from the 7 factors already mentioned above the physician wants to check for high uric acid levels (hyperuricemia), kidney disease, high clotting factors (fibrinogen levels), elevated iron levels, trans fatty acid levels, omega-3 fatty acid levels and omega-6 to omega-3 ratio, low dietary potassium and magnesium intake with high sodium intake, increased high sensitivity C reactive protein level (hs CRP measuring inflammation). The list to test for cardiovascular disease risk continues with blood tests for vascular immune dysfunction and increased oxidative stress, lack of sleep, lack of exercise, subclinical low thyroid levels, hormonal imbalances for both genders, chronic infections, low vitamin D and K levels, high heavy metals and environmental pollutants.

The speaker stated that he includes a hormone profile and vitamin D levels. He does biochemical tests to check for mitochondrial defects. Micronutrients are also checked as cardiovascular patients often have many nutritional deficiencies. Inflammation is monitored through testing the levels of C-reactive protein (CRP).

In order to assess the risk of a patient Dr. Cohen, a cardiologist has developed the Rasmussen score, which is more accurate than the Framingham score.

The following tests are performed on the patient: computerized arterial pulse waveform analysis (medical imaging), blood pressure at rest and following exercise and left ventricular wall of the heart by echocardiography. Further tests include urine test for microalbuminuria, B-type natriuretic peptide (BNP, a measure of congestive heart failure), retinal score based on fundoscopy, intima-media thickness (IMT, measured by ultrasound on the carotid artery) and electrocardiogram recording (EKG).

Here is what the Rasmussen score means:

  • Disease score 0 to 2: likely no heart attack in the next 6 years
  • Disease score 3 to 5: 5% likely cardiovascular events in the next 6 years
  • Disease score > 6: 15% likely cardiovascular events in the next 6 years

Non-intervention tests to measure cardiovascular health

1. The ENDOPAT test

With this test the brachial artery is occluded with a blood pressure cuff for 5 minutes. Endothelial dysfunction is measured as increased signal amplitude. A pre- and post occlusion index is calculated based on flow-mediated dilatation. The values are interpreted as follows: an index of 1.67 has a sensitivity of 82% and specificity of 77% to predict coronary endothelial dysfunction correctly. It also correlates to a future risk for coronary heart disease, congestive heart disease and high blood pressure.

2. The VC Profile

This test measures the elasticity of the arteries. There is a C1 index that measures the elasticity of the medium and smaller vessels and the C1 index, which measures elasticity of the larger arteries and the aorta. The smaller the numbers are, the less elastic the arterial walls.

3.The Corus CAD score

This is a genetically based blood test. The score can be between 0 and 40. If the score is 40, there is a risk of 68% that there is a major blockage in one or more coronary arteries.

4. Coronary artery calcification

The CAC score correlates very well with major event like a heart attack. There is a risk of between 6- and 35-fold depending how high the CAC score is. The key is not to wait until you have calcification in your coronary arteries, but work on prevention.

Treatment of cardiovascular disease and inflammation

When heart disease is treated the doctor needs to address all of the underlying problems. It starts with good nutrition like a DASH diet or the Mediterranean diet.

Next anti-inflammatory and other supplements are added: curcumin 500 mg to 1000 mg twice a day, pomegranate juice ¼ cup twice per day, chelated magnesium 500 mg twice per day, aged garlic 1200 mg once daily, taurine 3 grams twice per day, CoQ-10 300 mg twice per day and D-ribose 5 grams three times per day. This type of supplementation helps for chest pain associated with angina. On top of this metabolic cardiology program the regular cardiac medicines are also used.

Additional supplements used in the metabolic cardiology program may be resveratrol 500 mg twice per day, quercetin 500 mg twice per day, omega-3 fatty acid 5 grams per day, vitamin K2 (MK 7) 100-500 micrograms per day and MK4 1000 micrograms per day. In addition he gives 1000 mg of vitamin C twice per day. This program helps in plaque stabilization and reversal and reduction of coronary artery calcification.

Case study showing the effect of metabolic cardiology program

Here is a case study of a heart patient that was treated by Dr. Houston. He was a white male, first treated for congestive heart failure as a result of a heart attack in June 2005. Initially his ejection fraction was 15-20%. His medications were: digoxin 0.25 mg once daily, metoprolol 50 mg twice per day, ramipril 10 mg twice per day, spironolactone 25 mg twice per day and torsemide 20 mg once daily. These medications were kept in place, but the metabolic cardiology program was applied in addition. Here are the results of his ejection fraction (EF) values after he was started on the metabolic program:

  • Initial measurement: EF15-20%. Marked shortness of breath on exertion.
  • 3 months: EF 20-25%. He reported improved symptoms.
  • 6 months: EF 25-30%. He said that he had now minimal symptoms.
  • 12 months: EF 40%. He had no more symptoms.
  • 24 months: EF 50%. He reported: “I feel normal and great”.
  • 5 years: EF 55%. He said” I feel the best in years”.

A normal value for an ejection fraction is 55% to 70%.

Cardiovascular Disease And Inflammation

Cardiovascular Disease And Inflammation

Conclusion

Testing for heart disease risk has become a lot more sophisticated than in the past, and the tests have opened up a window to early intervention. Metabolic cardiology is a new faculty of cardiology that assists in the reversal and stabilization of heart disease. It will help high blood pressure patients and stabilizes diabetes, which would otherwise have deleterious effects on heart disease. Metabolic cardiology improves angina patients. It also prevents restenosis of stented coronary arteries. As shown in one clinical example reduced ejection fractions with congestive heart failure will improve. This was achieved solely through the metabolic cardiology program.

As usual, prevention is more powerful than conventional treatment later. To give your cardiac health a good start, don’t forget to cut out sugar, exercise regularly and follow a sensible diet.

Incoming search terms:

Nov
05
2016

Health Risks Of Night Shifts

One of the news stories in 2016 was about health risks of night shifts. The Bureau of Labor Statistics reported in 2000 that 15 million workers (16.8 % of the working population) were doing alternative shifts (night shift work mixed with daytime shifts). In 2016 they reported 14.8% were working alternate shifts. Among blacks, Asians and Latino Americans the percentage of working alternative shifts was higher, namely 20.8%, 15.7% and 16%, respectively.

Shift work is more common in certain industries, such as protective services like the police force, food services, health services and transportation.

Evidence of health risks of night shifts

There are several publications that showed evidence of health risks of night shift workers. Here is a random selection to illustrate the health risks of night shifts.

  1. A study from 2015 examined the sleep patterns of 315 shift nurses and health care workers in Iranian teaching hospitals. They found that 83.2% suffered from poor sleep and half of them had moderate to excessive sleepiness when they were awake.
  2. This South Korean study examined 244 male workers, aged 20 to 39 in a manufacturing plant. Blood tests from daytime workers were compared to night shift workers. Inflammatory markers like the C-reactive protein and leukocyte counts were obtained. Night shift workers had significantly higher values. The investigators concluded that shift workers have increased inflammatory markers. This is a sign of a higher risk of developing cardiovascular disease in the future.
  3. A Swedish study found that white-collar shift workers had a 2.6-fold higher mortality over a control group of daytime white-collar workers.
  4. Another study compared night workers in the age group of 45 to 54 with daytime workers and found a 1.47-fold higher mortality rate in the night shift workers.
  5. In a study from China 25,377 participants were included in a study that investigated cancer risk in males with more than 20 years of night shift work. They had a 2.03-fold increased risk to develop cancer compared to males working day shifts. Women with night shift work were unaffected with regard to cancer.
  6. A Polish study examined hormones and the body mass index (BMI) among 263 women who worked night shifts and 269 women who worked day shifts. When night shift workers had worked more than 15 years at nights, their estrogen levels, particularly in postmenopausal women were elevated compared to the daytime workers who served as controls. The BMI was also increased in the nighttime workers.
  7. Chronic lymphocytic leukemia (CLL): a study in Spain showed that working for more than 20 years in rotating night shifts was associated with a 1.77-fold higher risk of developing CLL. The authors noted that melatonin levels in that group were much lower than in controls that worked only day shifts. Working in straight night shifts did not show higher risks of CLL compared to daytime workers.
  8. In a Korean study from Seoul 100 female medical technologist who worked nighttime had their melatonin levels tested, which were compared to daytime workers.  They measured 1.84 pg/mL of melatonin for the nighttime workers compared to 4.04 pg/mL of melatonin in the daytime workers. The authors felt that this is proof that the diurnal hormone system has been disrupted. When the melatonin level is altered, the circadian hormone rhythm is also changed.
  9. A group of 168 female hospital employees doing rotating nightshift work in Southern Ontario hospitals were compared to 160 day workers. Cortisol production was assessed. Cortisol production in day workers and in shift workers on their day shift was similar. However, shift workers on their night shift had flatter cortisol curves and produced less cortisol. The authors felt that this disruption of cortisol production would explain why rotating night shift workers have a higher risk of cardiovascular diseases.
  10. A Danish study with female nurses followed 28,731 nurses between 1993 and 2015. Daytime nurses were compared to rotating nighttime nurses and the incidence of diabetes was measured. Night shift workers had a risk between 1.58-fold to 1.99-fold when compared to daytime workers to develop diabetes. The risk for evening shift workers was less (between 1.29-fold and 1.59-fold).

Diurnal hormone rhythm behind health risks of night shifts

Your body has its own rules. It rewards you, if you sleep 7 to 8 hours during the night, but it will penalize you severely, if you turn it upside down. The reason is our built-in diurnal hormone rhythm. A peak of melatonin regulates sleep during the night. Melatonin is released by the pineal gland (on the base of the skull) when it gets dark outside. Daytime wakefulness is regulated by the stress hormone cortisol from the adrenal glands. These two hormones inhibit each other, cortisol inhibits melatonin and melatonin inhibits cortisol. All the other hormones are also regulated according to the diurnal rhythm: testosterone is highest in the morning, human growth hormone is highest between midnight and 3 AM etc.

When you work daytime shifts, your diurnal hormone rhythm is unchanged. But if you work night time shifts, your hormones have to adapt. This is very similar to traveling east or west where you cross several time zones. Your internal diurnal hormone system has to adjust to these changes. Typically it takes 1 day to adjust to a 1-hour time zone difference.

In people who work permanent night shifts, the hormone changes stay adjusted and there is no further switching. But most employers want to be “fair” to everybody, so they introduced the rotating night shifts, which as all the publications cited above show is the worst thing you can do. It messes with your diurnal hormone rhythm, and some people never switch completely to the new hours worked. They don’t get enough daytime sleep because the kids are loud during the day etc. The rotating shift workers are running the highest risk of getting cancer, diabetes, cardiovascular diseases, obesity, cancer, leukemia, and they have low levels of melatonin.

Health Risks Of Night Shifts

Health Risks Of Night Shifts

Conclusion

When shift workers work constant night shifts, this is less stressful to our system than the more common rotating shift work. This is where you work night shifts for a period of time, then the schedule switches to day shift, and you keep on rotating. The least health risks are associated with regular daytime work. People exposed to rotating night shifts suffer from poor sleep. They have a higher risk of gaining weight, getting obese and acquiring diabetes in time. They are at a higher risk for heart attacks, strokes and cancer. All-cause mortality is about twofold higher than for workers who work day shifts.

The underlying problem seems to be a disturbance of the diurnal hormone rhythm. Normally this regulates our waking/sleeping rhythm and keeps us healthy. But with nighttime work melatonin production weakens, cortisol production is reduced and hormone rejuvenation during rest periods suffers greatly. This weakens the immune system, allows cancer to develop and leads to chronic inflammation causing cardiovascular disease and diabetes. The remedy to prevent this from happening is to catch little naps whenever you can during the day and, if at all possible, work daytime shifts permanently.

Incoming search terms:

Oct
01
2016

Sugar Can Cause Heart Attacks

Recently an online medical journal article from JAMA has revealed that sugar can cause heart attacks. As the Guardian reports, this analysis of influence peddling of the sugar industry going back 60 years has had far-reaching effects by confusing the public and policy makers in the US and around the world. At the same time the interference of the sugar industry was protecting its own interests. It increased sugar sales, but made people sick with obesity, diabetes and cardiovascular disease. This story is similar to the tobacco industry that was able for years to cover up that cigarette smoke is causing heart attacks and lung cancer.

Denying that sugar can cause heart attacks

When the English physiologist John Yadkin noted in the 1960’s that sugar was elevating cholesterol and triglycerides, the sugar industry was panicking. Something had to be done to stop this new research. As we can read in the online JAMA review the Sugar Research Foundation (SRF) had 319 correspondences (1551 pages) with Roger Adams. He was a professor who served on the SRF’s scientific advisory board (SAB) from 1959 to 1971. Another piece of evidence of influence peddling came from a review of correspondence between the SRF and D. Mark Hegsted. He was professor of nutrition at the Harvard School of Public Health. At the same time he was co director of the SRF’s first coronary heart disease research project. This took place from 1965 to 1966. There are 27 documents totaling 31 pages in the Harvard medical Library. It is clear from this correspondence that the SRF was looking for a way to undermine the new research findings of negative effects of sugar. The SRF was looking for a way to confirm that fat reduction would be beneficial for patients. This way many people would be put on a low fat diet, which in turn would ensure continuing and rising sales of sugar.

New evidence that sugar can cause heart attacks

New research came out by D. Mark Hegsted in the Annals of Internal Medicine in June 1965. It linked sugar consumption to cardiovascular disease. It noted that blood sugar levels were a better predictor of hardening of arteries than cholesterol levels or high blood pressure. Another paper stated that it was sugar rather than starches causing high triglycerides in the blood. He hypothesized that “perhaps fructose, a constituent of sucrose but not of starch, was the agent mainly responsible.” An editorial in the same publication noted that these new findings corroborated Dr. Yudkin’s previous research that sugar could cause heart attacks.

The sugar industry was very concerned about these studies. If publicized widely, it would have the capacity to lower sugar sales.

Sugar can cause heart attacks, but review paper ignores this

On July 1, 1965, the SRF’s Hickson visited D. Mark Hegsted to discuss his publication. He wanted him to be part of an extensive literature review that would show that it was too much saturated fat that was the cause of high cholesterol and triglycerides, not sugar. It also should state that a lowering of fat content from 40% to 20% was necessary and that polyunsaturated fatty acids should be used to replace much of the fat. The fact that the food industry would quietly increase sugar content in processed foods was not mentioned. The review paper was called “Project 226”. It resulted in a 2-part literature review by McGandy, Hegsted, and Stare. It was entitled “Dietary Fats, Carbohydrates and Atherosclerotic Disease,” and was published in the New England Journal of Medicine (NEJM) in 1967. Industry and non-industry funding of the review authors’ experimental research was disclosed. However, the funding by the Sugar Research Foundation was omitted. The authors of the study received handsome amounts of money from the SRF for their efforts. The story that was fabricated is all too well known, but false. It claimed that the medical literature would have shown that a reduction of saturated fat intake would lower cholesterol. It ignored triglyceride levels and stated that only cholesterol levels were significant with respect to coronary artery hardening. It also stated that replacement of saturated fat with polyunsaturated fatty acids like corn oil would also be beneficial in reducing heart attack rates.

Effect of the literature review on heart attack rates

Sadly the NEJM literature review has resulted in government policy for decades where the gospel was preached that a low fat diet would prevent heart attacks. The food industry has prepared processed foods, all low in fats and high in sugar that were supposed to he healthy. But the extra sugar made people fat, it did not decrease heart attack rates, but made them more frequent. Strokes were also on the rise and diabetes has become rampant. The reliance on corn oil has introduced another problem: omega-6 fatty acids are now consumed at an alarming rate. Corn oil has a 1:59 ratio for omega-3 to omega-6 fatty acids.

This means that corn oil contributes to the lack of omega-3 fatty acids in our food. When the ratio of omega-3 to omega-6 fatty acids falls below 1:3 or 1:4 the metabolism changes towards inflammation as the arachidonic acid system switches toward inflammation. Cardiologists have pinpointed inflammation as an important cause of hardening of arteries. Fish oil, a rich source of omega-3 fatty acids helps to prevent hard attacks and strokes.

The end result of the confusion regarding fat, sugar and heart attacks caused by the biased literature review meant misery, suffering and death for many for decades. But recently there has been a renaissance of Dr. John Yadkin’s research: Now it is clear what sugar is doing and how it affects our health.

How sugar can cause heart attacks and more

It is clear that sugary soda has detrimental effects on us: as little as one or two cans of sugary soda drinks per day lead to

  • 26 percent greater risk of developing type 2 diabetes,
  • A 35 percent greater risk of heart attack or fatal heart disease, and
  • A 16 percent increased risk of stroke.

Dr. Frank Hu has participated in a study that spanned over 24 to 30 years and examined the replacement of saturated fat with polyunsaturated fatty acids (PUFA), monounsaturated fatty acids and whole grain carbohydrates. The study involved 84,628 women (Nurses’ Health Study, 1980 to 2010), and 42,908 men (Health Professionals Follow-up Study, 1986 to 2010). The diet was assessed with detailed questionnaires every 4 years. 7,667 cases of cardiovascular disease (CHD) occurred during the long observation times. Compared to controls that did not change their diet with respect to saturated fatty acid intake, those who replaced with PUFA had 25% less CHD, those who replaced with monounsaturated fatty acids had 15% less CHD and those who replaced saturated fatty intake with whole grains had 9% less CHD. In contrast, a subgroup that had replaced saturated fatty acid intake with carbohydrates from refined starches/added sugars ended up with a 10% increase of CHD.

We know now that sugar can increase cholesterol and triglycerides as Dr. John Yadkin has said in the 1960’s.

We also know that sugar can cause arthritis when combined with low omega-3 fatty acids and high omega-6 fatty acids. In the 1950’s Dan Dale Alexander wrote a book called “Arthritis and common sense”. The medical establishment did not accept that simple remedy and Dan Dale Alexander was classified as a “quack”. However, Dr. Mirkin describes a study from Berlin that later confirmed that Dan Dale Alexander’s observation was correct: an emulsion made by shaking orange juice with cod liver oil and taken three times per day on an empty stomach would indeed improve osteoarthritis.

High glycemic foods (sugar, starchy foods) were associated with breast cancer, colorectal cancer and endometrial cancer. The majority of trials showed this association although not all. The more obese patients were, the more pronounced the insulin resistance was and the more the relationship to these cancers became apparent. A diet that is high in starchy foods like potatoes, rice and bread is causing pancreatic cancer as was shown by researchers at the Dana-Faber Cancer Institute, Brigham and Women’s Hospital and Harvard School of Public Health.

Sugar Can Cause Heart Attacks

Sugar Can Cause Heart Attacks

Conclusion

The low fat/ high glycemic diet was a fad-diet based on fictitious science, sponsored by the sugar industry. In a way it became a human experiment and resulted in 60 years of suffering to show that this diet did not work. It caused the obesity wave, a wave of heart attacks, strokes and cancer, all caused by too much sugar in the diet. Associated with this are the consumption of processed foods with too much sugar and an abundance of omega-6 fatty acids causing inflammation and hardening of the arteries.

We finally know that sugar raises cholesterol (LDL cholesterol in particular) and triglycerides. This leads to fat deposits and hardening of the arteries resulting in strokes and heart attacks. Remove refined sugar, limit your starchy food intake and eat fish as a source of omega-3 fatty acids. Feast on vegetables, salads and have some nuts as another source of omega-3 fatty acids and you are well on your way to preventing heart attacks, strokes and many cancers. After reading all the facts it does no longer make sense to be a victim of the sugar industry and the associated health risks.

Incoming search terms:

Apr
23
2016

Healing Powers Of Green Tea

Powerful catechins that are a special form of bioflavonoids provide the healing powers of green tea. Research teams have proven that these catechins are only contained in green tea, not so much in black tea. The most effective of several catechins contained in green tea is EGCG, which stands for EpiGalloCatechin-3-Gallate. It crosses the blood/brain barrier and is very important for the protection of the brain from Alzheimer’s disease. But green tea or green tea extract has a diversified pharmacological action. It is said to protect you from cardiovascular disease, from obesity, from diabetes, from autoimmune disorders, from cancer and from Alzheimer’s and dementia.

In the following I like to comment on how green tea or its extract can protect from all of these diseases.

Alzheimer’s disease

Although there are 5 or 6 approved anti-Alzheimer’s drugs, none of them work for very long. They may at best postpone the deteriorating memory for 6 months, but then the effect of the drug wears off. The reason is that the drugs do not stop the production of the deadly beta-amyloid. It is the beta-amyloid that damages nerve cells that you want to preserve so you can think and memorize. In contrast a simple phytochemical, the catechin EGCG has been shown in animal experiments and in human trials to stop beta-amyloid production and increase solubility of beta-amyloid fragments in the brain. The end result is better memory and no further deterioration.

In a study of 13,988 elderly Japanese observed over 3 years the group that consumed 3 to 4 cups of green tea daily had 33% less strokes, cognitive impairment and osteoporosis.

Researchers at the University of Basel, Switzerland enrolled 12 healthy volunteers aged 21 to 28 and fed them extracts of green tea or placebo fluid via feeding tubes. This was done to rule out taste as a factor. Functional MRI scans were applied as the subjects were given memory-stimulating tasks. Only the green tea extract was boosting activity in the frontal brain of the subjects. This was located in a specific area, called dorsolateral prefrontal cortex. This area is known to be involved with language comprehension, reasoning and learning. It also switches short-term memory into long-term memory, called working memory processing.

Studies in animals have shown that nerve cells are protected from the toxic effect of beta-amyloid and at the same time the production of new brain nerve cells (neurons) is triggered by green tea extract. This is really good news for Alzheimer’s disease patients and their families: green tea extract delays further memory deterioration and stimulates the development of new nerve cells in the brain!

Cardiovascular disease

In a 2006 Japanese study 40,530 Japanese adults aged 40 to 79 years without history of stroke, coronary heart disease, or cancer at baseline were observed for 7 years. Diaries were kept about how many cups of green tea each person was drinking per day. The biggest effect was seen with regard to prevention of heart attacks and strokes.

Men had a mortality reduction of 12% for heart attacks when they drank 5 cups or more of green tea; in women the corresponding mortality reduction for heart attack was 31%, a bigger effect. Overall mortality from strokes was lower than from heart attacks making the effect of green tea consumption even more beneficial with respect to stroke prevention. In this study no cancer preventing effect was observed for green tea.

Obesity

It appears that green tea increases heat production and burns fat in the process. There was a small effect in terms of weight loss and a beneficial effect increasing the protective HDL cholesterol in this 2012 Polish study on obese patients. The authors compared either 379 mg of green tea extract, or a placebo, daily for 3 months. They concluded: “The results of this study confirm the beneficial effects of green tea extract supplementation on body mass index, lipid profile, and total antioxidant status in patients with obesity.”

Diabetes

Although there are claims in some studies that green tea would prevent diabetes, this question was thoroughly investigated in this Chinese 2014 study.

No effects were noted on fasting blood sugars or on hemoglobin A1C values, a very sensitive indicator for the presence or absence of diabetes. All these lab tests were unchanged following consumption of green tea or green tea extract. Forget using green tea for diabetes prevention; cut out sugar and starchy foods instead.

Autoimmune disorders

Sjogren’s syndrome and lupus are both autoimmune diseases. Green tea extract has shown in humans that symptom severity can improve; green tea polyphenols (GTPs) possess anti-inflammatory properties that benefit patients with autoimmune diseases.

In an animal model arthritis researchers determined that T helper cells are weakened and bone resorption is inhibited by EGCG from green tea extract.

Researchers at Harvard Medical School, Boston, MA have noted that green tea extract is useful in calming down the immune response in autoimmune diseases. They concluded: “Altogether, these studies identify and support the use of EGCG as a potential therapeutic agent in preventing and ameliorating T cell-mediated autoimmune diseases.”

Cancer

Many research papers have found that EGCG from green tea extract has immune modulatory effects that are useful in combination with chemotherapy. A combination of cisplatin therapy with green tea extract has been found to have more effects on colorectal cancer and ovarian cancer than each one on its own. Similarly chemotherapy of breast cancer had better results in humans when EGCG from green tea extract was added as an immune modulation. More research, particularly in humans is needed to fully understand the mechanism of action of EGCG.

Toxicity of green tea extract

Animal experiments showed that higher doses of green tea extract could cause toxicity in the liver and in the nose of rats and mice. I was not able to find objective evidence for green tea toxicity in the PubMed system with respect to humans.

Healing Powers Of Green Tea

Healing Powers Of Green Tea

Conclusion

Perhaps the most important discovery regarding green tea extract is that it crosses easily through the blood/brain barrier into the brain. This can postpone Alzheimer’s disease and can even lead to new neuron formation. The beneficial cardiovascular effects are also useful and combine well with exercise and good nutrition for prevention. Particularly stroke prevention is a useful property of EGCG from green tea extract. The effect on obesity is marginal whereas there was no effect of green tea on prevention of diabetes. The immune modulatory effect of green tea extract is useful in the treatment of autoimmune diseases and of cancer. Existing treatments for these conditions are becoming more effective by adding green tea extract.

Dec
26
2015

Coffee Could Be A Lifesaver

Coffee has long been a subject of heated discussions. It has been praised or condemned. Many studies have been done in the past; some showed health benefits, some did not. A new, larger study was done by the Department of Nutrition, Harvard School of Public Health in Boston, MA to re-examine this issue for both caffeinated and decaffeinated coffee.

Mortality was determined among 74,890 women in the Nurses’ Health Study (NHS), 93,054 women in the NHS 2, and 40,557 men in the Health Professionals Follow-up Study after a medium follow-up of 22.5 years. 19,524 women and 12,432 men died during that time period. Ming Ding is a doctoral student in the Harvard School of Public Health department of nutrition and was the lead author of the study that was published in the medical journal “Circulation”. She pointed out that in the past there were confounding problems: although many studies had shown that both caffeinated and decaffeinated coffee consumption lowered the risk of cardiovascular disease, the results in many studies were blurred. Studies often did not distinguish between smokers and nonsmokers; so a beneficial effect from coffee drinking was wiped out by the cardiovascular risk from smoking.

Ding’s studies took this into account and also other confounding factors like how much sugary soda pop people were drinking and whether or not they were eating well. In addition they normalized for other factors that could interfere like drinking alcohol and eating red meat.

Without normalizing for the factors mentioned above the study results were as follows. Study participants had less than a cup of coffee and three cups a day had a 5% to 9% lower risk of dying than those who drank no coffee. Those who drank more than three cups a day did not see any benefit.

However, when all the confounding factors were removed and the various groups were compared again the following emerged:

  • Less than 1 cup of coffee per day: 6% lower death rates than non-coffee drinkers.
  • 1 cup to 3 cups of coffee per day: 8% lower death rates.
  • 3 to 5 cups of coffee per day: 15% lower death rates.
  • More than 5 cups of coffee per day: 12% lower death rates.

Ming Ding was associated with another research paper that had shown that coffee drinkers have a lower risk of developing type 2 diabetes and heart disease. She found that both caffeinated and decaffeinated coffee reduced the risk of getting diabetes later in life.

When asked about what would be responsible for the reduced death rates with coffee consumption, Ding explained: “There are at least two known chemicals in coffee, namely lignans and chlorogenic acid that could reduce inflammation and help control blood sugar, both of which could help reduce the risk of heart disease”.

Although there seems to be a linear response up to 5 cups of coffee consumption, above 5 cups this linear relationship disappeared. It was not explained whether there was a saturation point reached, whether there was yet another hidden confounding factor or whether there were detrimental effects on the adrenal glands with too much coffee consumption.

Another finding was that it did not matter whether the coffee was regular (caffeinated) coffee or decaffeinated coffee. The results were identical.

Many other studies did not have the large numbers to show whether or not decaffeinated coffee was as effective in preventing heart disease.

Finally, there was another peculiar finding; suicides were down by 20% to 36%, if a person drank at least one cup of coffee per day. But if a person consumed less than 1 cup of coffee per day the suicide rate was 36% higher than the control group with no coffee consumption. This is a rather peculiar finding, particularly for the consumption of less than 1 cup of coffee. But other studies have also shown a decrease in suicide rates with coffee consumption.

Although previous studies had shown a reduction in liver and prostate cancer, after the removal of confounding factors this study did not show any effects on cancer causation or cancer death rates with coffee consumption.

Discussion

The Department of Nutrition, Harvard School of Public Health in Boston, MA has excelled in high quality nutritional studies for decades. But this study is particularly important, because it is so large giving it more statistical power; secondly, the observation time of an average of 22.5 years is longer than most coffee studies in the past. Add to this the removal of the noise (called confounding factors) that interfered with the objective of the study and you end up with a very meaningful result.

The important findings were that both caffeinated and decaffeinated coffee have the same effect of saving lives. Perhaps you want to drink not more than 5 cups of coffee per day. That lowers your risk of premature death by 15%. It is most likely that it is the effect of lowering the rate of diabetes and heart attack rates that is responsible for the risk reduction. At least this was the opinion of the chief investigator. Cancer rates were not lowered by coffee consumption.

I sleep better when I drink decaffeinated coffee, so for me the notion that decaffeinated coffee had the same effect as regular coffee was important.

Coffee Could Be A Lifesaver

Coffee Could Be A Lifesaver

Conclusion

Here is a study that is large enough, went long enough, and showed decisively that both caffeinated and decaffeinated coffee will reduce the death rate by 15% up to 5 cups of coffee per day. This finding was true for both males and females. Coffee seems to also reduce the suicide risk by a mechanism that has not yet been determined. If you want to live 15% longer than your previous life expectancy would have been without coffee, you may now have your coffee and enjoy it!

Aug
07
2015

Sugar As White Death

Sugar is causing disability and mortality to a much higher degree than most people are aware of: a recent study pointed out that worldwide 184,000 deaths per year are attributable to sugar-sweetened beverage consumption; among those there are 133,000 deaths from diabetes, 45,000 deaths from cardiovascular disease and 6,450 deaths from cancers. Those people who developed disabilities from strokes, heart attacks, osteoporosis and severe arthritis measured 8.5 million disability-adjusted life years throughout the world and were related to sugar-sweetened beverages. 4.5% of these were from diabetes that was related to sugar-sweetened beverages.

These statistics are only regarding sugar-sweetened beverages! This does not take into account mortality from sugar in processed foods, in cookies, cakes and candies. It also does not take into account starchy foods like pasta, bread, bagels, white rice etc. that are all digested by amylase in the mouth and in the gut to turn into sugar within half an hour of ingesting them.

In the following I like to give an overview of what sugar does to our system.

History of sugar production

The initial production of refined sugar was developed in India as this review of the history of sugar shows.

In Great Britain the consumption of sugar was 4 pounds per person per year in 1700; it rose to 18 pounds per year in 1800, to 36 pounds per year by 1850 and over 100 pounds per year by the twentieth century. Similar figures are true for the US and in all developed countries. In 1747 the German chemist Andreas Marggraf identified sucrose in beet root. Since then technology was developed to extract sugar from the beet root, which was cheaper to do than extracting it from sugar cane. Both methods are in use today. In addition high-fructose corn syrup has been developed in 1970 and it replaces sugar in many uses, for instance in soft drinks and in processed foods.

Overall we are exposed to sugar in all disguises, such as sugar-sweetened beverages, candies, sweetened yogurt that is sold as “healthy”, power bars that are sugar laden and many more.

Effect of sugar on our bodies

1. Diabetes

As already pointed out above the average sugar consumption has increased from 4 pounds per person in 1700 to above 100 pounds per person in our time. Our poor pancreas has to cope with this additional burden of sugar and if it can’t, we get diabetes. The CDC says that in 2008 there were 8 cases of new type 2 diabetes cases per 1000 people in the US. The CDC projects that in 2050 this number will likely increase to 15 new cases of type 2 diabetes per 1000 people.

This shows you that the capacity of the human pancreas is limited. There is a breaking point regarding our insulin production. The insulin production has a limit, because the insulin producing cells in the pancreas can only produce a limited amount of this sugar-clearing hormone. When this point is reached the person is said to have developed diabetes. Diabetes causes heart attacks, strokes, kidney failure, blindness and circulation problems in the legs leading to amputations.

2. Cardiovascular disease

Diabetes is not the only problem that sugar causes. Our cardiovascular system is suffering because sugar makes the liver produce more LDL cholesterol that gets oxidized by sugar; the triglycerides are rising as well with continued sugar intake and with too much sugar intake there is excessive weight accumulation causing type 2 diabetes. This leads to more lipids in the arterial walls, called arteriosclerosis. The end results are heart attacks and strokes.

3. Cancer

It may not be obvious how sugar intake can lead to cancer. But sugar has been found to oxidize tissues and in the process produce dangerous free radicals. This causes chronic inflammation leading to mutations in the DNA of cells and weakening of the immune system. This will in time lead to cancer. Many cancer researchers have investigated this in detail in the last decades. I reviewed this in this blog, if you would like more information about it.

4. Brain atrophy and Alzheimer’s disease

Sugar overconsumption has been found to be one important factor in the development of Alzheimer’s disease, which is associated with the development of brain atrophy. Brain atrophy is just the mirror lesion in the brain that comes from hardening of the arteries. Brain atrophy develops when not enough nutrients and oxygen reach your brain cells. Part of the brain surface dies off and memory cells are lost. The end result is dementia or Alzheimer’s. Read more about this here.

5. Arthritis can come from sugar overconsumption

As I have summarized in this blog arthritis often is due to over consumption of processed foods including sugar products.

As I am explaining in this blog Dr. Hoffer has developed a simple supplementation for arthritis that will reverse the metabolic changes that are associated with arthritis. But you must switch to a Mediterranean diet without sugar and starchy foods, if you want to experience relief from your arthritis symptoms.

6. Low fat diet not helpful to reduce heart attack rates

As I pointed out before the low fat diet that was popular in the 1980’s until the early 2000’s did not help reducing heart attacks.

The low fat diet was laden with sugar, meaning that it was a low fat, high carb diet, and all of the problems I described above with weight gain, high LDL, high triglycerides and the development of diabetes caused more heart attacks and strokes. The real solution to preventing obesity and lowering heart attacks and strokes is to use a low carb/low to medium fat diet like the Mediterranean diet.

7. We need our muscles in older age

When we eat too many carbs from chocolate, candy, donuts and pasta there is not enough quality protein in our food to feed our muscles. If this is combined with a lack of exercise we are in double trouble of having flaccid muscles. This leads to falls and fractures, but is entirely preventable by eating a proper diet and exercising regularly.

8. ADHD can be fuelled by sugar

I have reviewed ADHD (attention deficit hyperactivity disorder) and mentioned that sugar and gluten sensitivity may be part of the problem. It is important to sort out nutritional factors by going through an elimination diet. Often our Western style diet (sugar and fat rich) is making things worse for the child with ADHD.

Apart from other measures avoiding sugar is very important for the ADHD patient.

9. Chronic inflammation

What causes chronic inflammation in the body and is responsible for both hardening of the arteries as well as arthritis? If you guessed sugar intake, you guessed right. I explained this in detail in this blog.

This concept is one of the biggest new things in the 21st century. The research goes back to the mid-nineties and culminated in the detection of an inflammatory marker, the C-reactive protein (CRP). The CRP level can now be used as a readily available blood test to detect inflammation in the body. Often this test will be positive in patients with arthritis, autoimmune diseases and cancer.

10. Obesity

Processed food contains wheat and sugar. The problem is that the high gliadin concentration in the Clearfield variety of wheat makes people addicted to food and sugar makes them gain weight. This is the cause of the obesity and diabetes wave. The remedy is to cut out all wheat and sugar as well as starchy foods. Switch to a Mediterranean diet without sugar and starchy foods.

11. Pimples and acne

Who would have thought that acne could come from a combination of sugar and milk products? Careful epidemiological studies have shown that in some regions of Africa, Brazil and Japan teenagers who eat the local food do not get acne, but when they switch to a Western style diet they come down with acne.

12. Tooth decay from too much sugar

Gum infections and severe tooth decay were found in the 1990’s to cause inflammation in the blood, which can be measured by using the C-reactive protein (CRP). Streptococcus viridans, a bacterium that populates gums and teeth can cause subacute endocarditis, a dangerous infectious disease of the heart valves, which can be responsible for sudden death in younger persons. There are other bacteria in the mouth that feed on sugar that we eat, particularly if we do not brush and floss our teeth regularly. This means there is double trouble: Sugar causes cavities and gum disease, but also causes heart attacks and heart valve infections.

Sugar As White Death

Sugar As White Death

Conclusion

When you consider how many organ systems are affected by sugar and starchy food consumption it is no wonder that people say that they feel better when they switch from the standard American diet to a Mediterranean type diet. We do not really want to buy a heart attack, a stroke, diabetes and Alzheimer’s disease when we go to the grocery store. But this is what you get in time when you buy the starchy foods and sugar containing processed foods that are in the center part of the grocery store. When I go shopping I always eye the groceries of my neighbor before or after me. Sometimes it is scary to look at the content of some of the shopping wagons. There is bread, potato chips, pretzels, chocolate bars, cookies, and the whole lineup that is really rich in sugar. Healthy yoghurt mixed with sugar has become unhealthy, granola is loaded with honey or maple syrup, jams contain 50% sugar, and on and on it goes. It is sobering to see how illness and disability is for sale, one shopping at a time. The reassuring truth is that you have choices!

Dec
27
2014

Stem Cells, Telomeres, Hormones And Lifestyle

I recently attended the 22nd Annual World Congress on Anti-Aging Medicine in Las Vegas (Dec.10 to 14, 2014) and stem cells, telomeres, hormones and lifestyle were the highlights this year. Every year there seems to be something new to learn. There were a lot of talks about stem cell treatments, about how lifestyle changes can be healing and how telomeres are in the center of epigenetics. Epigenetics is anything a person can do with lifestyle to help the body work better. In the center of many talks were telomeres, the small caps at the end of the DNA. With every cell division telomeres get shortened a bit until at the end of our lives our telomeres are significantly shorter. In one talk a slide was shown where the measurements of white blood cell telomeres from blood tests of a population from 20 to 100 years were shown. At the age of 100 the average telomere length was only 40% of the average length of telomeres of the group at the age of 20.

In the past it was thought that our genes and how they function was something constant. Well, we have to rethink this both in positive ways as well as negatively. Using telomere blood tests it has been shown that certain diseases are associated with shorter telomeres. But on the other hand positive lifestyle changes and certain supplements can elongate telomeres by stimulating an enzyme called telomerase. Drinking excessively, doing drugs, smoking and even using non-steroidal anti-inflammatory drugs (NSAIDs) shorten your telomeres. This is what epigenetics is all about. It is true that you cannot change your genetics, but you can change the epigenetics (meaning the length of telomeres).

As this topic is so large, I have decided to give an overview about the conference in this blog and in future blogs provide more details about some of the key talks.

A review like this is always personal. Other people probably would find other talks more illuminating. So here are my personal impressions about the topics that I found most fascinating.

Stem cells

There were several talks about stem cells. Dr. Joseph Purita talked about the rejuvenating effects of PRP (platelet rich plasma) on stem cells that are injected. This was a fairly technical talk, but pointed out how important it is to provide the appropriate growth factors to nurture transplanted stem cells for a long-term success. The sources of stem cells can be from fatty tissue around the “love handles” or the abdominal fat. A stem cell separator is used to separate stem cells from the rest of the tissue. This is combined with PRP coming from centrifuged blood and is combined with the stem cells and injected. The newest insight is that short-term exposure to red, green and blue soft lasers further activates stem cells. Another source for stem cells is the bone marrow, usually from the pelvic bone, particularly for orthopedic surgical problems like non-healing fractures or torn ligaments. Slides were shown of completely healed avascular necrosis following stem cell treatment. At other lectures on prolotherapy combined with stem cell therapy completely torn anterior cruciate ligaments in the knee and a complete rotator cuff tear in the shoulder in another patient were healed (MRI scan shown before and after treatment).

Lifestyle

Dr. David Katz gave a presentation about “Integrative Medicine: A Bridge Over Healthcare’s Troubled Waters”. He pointed out that the first three things on the McGinnis list of actual causes of deaths in the US in 1993 were tobacco use, diet and lack of exercise. In 2004 the revised list no longer contained tobacco as the number one killer. All of the public campaigns had changed the culture of smoking so that the average American has changed the lifestyle. Stopping smoking has become desirable, and people know the devastating consequences of smoking. Dr. Katz stated that there is no magic pill to reduce mortality. However, if a healthy lifestyle were a pill, this is exactly what would reduce mortality by 80%. If you exercise on a regular basis, eat a Mediterranean type diet, and avoid sugary drinks you will prevent 80% of heart attacks, strokes and many cancers.

Telomeres

Dr. Sandy Chang gave a talk about “Telomere measurement as a diagnostic test in cardiovascular and age-related disease”. He pointed out that there is a large body of literature showing that telomere length is directly related to health. The shorter the telomeres are, the higher is the probability to experience problems: early menopause, infertility, diabetes, wrinkles, arthritis, osteoporosis, cardiovascular disease, Alzheimer’s, Parkinson’s, dementia, cancer, stress, a lack of stem cells. These are a number of factors that shorten telomeres: stress, poor diets, smoking, obesity, chronic inflammatory diseases, metabolic disorders like diabetes, over consumption of alcohol and lack of sleep.

Dr. Chang mentioned that there is a whole host of factors that can elongate telomeres by stimulating telomerase. It has been shown in humans that increased physical activity elongated telomeres. So did vitamin C, E and vitamin D3 supplementation, resveratrol, a Mediterranean diet and marine omega-3 fatty acid supplementation. In addition higher fiber intake, bioidentical estrogen in women and testosterone in men, relaxation techniques like yoga and meditation are also elongating telomeres.

Other speakers also talked about telomeres: Dr. Al Sears’ talk was entitled: “Telo-Nutritioneering: The latest generation of telomere modulators”. He mentioned that in his research he has identified at least 123 nutrients, vitamins and natural compounds that will elongate telomeres, often by stimulating telomerase. Vitamin C will significantly delay shortening of telomeres, which translates into delayed aging. In addition vitamin C has recently been shown to stimulate telomerase activity in certain stem cells. There is an herb, called Silymarin extract, which was recently found to increase telomerase activity threefold. N-acetyl cysteine is a building block for glutathione, a powerful anti-oxidant. In addition it has been shown to turn on the human telomerase gene. Other telomerase stimulators are green tea extract, ginkgo biloba, gamma tocotrienol (one of the components of the vitamin E group), vitamin D3 and folic acid.

Dr. George Rozakis gave a talk entitled “Nutrigenomics” where he mentioned that many diseases are due to methylation defects, a cellular pathway that required vitamin B2, B6 and B12. People with this defect have minor genetic variations that lead to elevated homocysteine in the blood. For instance migraine sufferers often have methylation pathway problems, which involves histamine overproduction and 92% of them can be helped with a histamine-restricted diet. Correcting a methylation pathway defect with the help of L-methylfolate can cure other diseases like depressive illness that does not respond to conventional antidepressant medication.

Stem Cells, Telomeres, Hormones And Lifestyle

Stem Cells, Telomeres, Hormones And Lifestyle

Hormone changes with stress

Dr. Thierry Hertoghe gave a lecture on “Burnout: A multiple hormone deficiency syndrome”. He said that burnout is a common condition where several hormones are affected, with the cortisol axis being the main one, but other hormone glands being stressed as well. As a result endocrine glands age prematurely. Symptoms are fatigue, exhaustion, gastrointestinal problems, anxiety, depression and aggressiveness. The underlying hormone abnormalities are a lack of cortisol, thyroid deficiency, growth hormone deficiency, testosterone and estrogen deficiency and oxytocin deficiency. Burnout is common in teachers and there is a questionnaire that has been developed for teachers (teacher’s burnout scale) to monitor them whether they are heading this way. Soldiers who return from combative situations often suffer from burnout or from PTSD. In suspected cases laboratory tests that measure hormone levels give concrete answers about deficiencies. Treatment protocols were discussed in detail. Multiple bioidentical hormone replacements are necessary, possibly for prolonged periods, if not life long. In addition supportive counseling sessions from a counselor or psychiatrist will help to tone down increased brain activity and help regain the internal balance. Why is this important? Because hormones are necessary on a cellular level and regulate the energy metabolism of every cell in the body.

Conclusion

This year’s conference was a very interesting combination of new information on stem cell therapy, telomeres and lifestyle intervention. As we age we lose hormones, which makes us age faster as the telomeres shorten faster. Shorter telomeres lead to inflammation in the body, which cause a myriad of disease processes. This aging process can be countered by adopting a healthier lifestyle with regular exercising, a Mediterranean diet and abandoning unhealthy habits like smoking, excessive drinking or taking illicit drugs. Vitamins and supplements, particularly resveratrol, CoQ-10 and omega-3 fatty acids will help to elongate and stabilize our telomeres. As Dr. Katz said: “A healthy lifestyle will reduce your mortality rate by 80%”.

Incoming search terms: