Aug
13
2022

New Immunotherapy Approach against Cancer

A recent publication reported about a new immunotherapy approach against cancer. The model it dealt with was a very vicious brain cancer with the name glioblastoma. The results of this research were subsequently transferred to another vicious cancer, osteosarcoma, which is a form of bone cancer with a very poor prognosis. Researchers have to do further clinical experiments to establish this new immunotherapy in osteosarcoma patients. Physicians completed the following experiments and clinical studies.

Oncolytic virus Delta-24-RGD can lead to remission in glioblastoma patients

Researchers at the University of Navarra, Pamplona, Spain together with The University of Texas MD Anderson Cancer Center in the US investigated glioblastoma patients. They found that treatment of glioblastoma patients with oncolytic viruses Delta-24-RGD led to a greater than 3-year remission in 20% of cases. Normally, patients with a glioblastoma survive only 9 months on average. 12% had a greater than 95% reduction in the size of the tumor. This was a phase 1 clinical study with 37 patients who had recurrent malignant glioblastoma. The authors said: “Oncolytic adenoviruses are attractive therapeutic agents because they can kill tumor stem cells and induce cell death by several mechanisms, including direct lysis, expression of toxic proteins, induction of cytokines, and T-cell–mediated immunity.” The particular oncogenic virus that the researchers used was an adenovirus Delta-24-RGD.

Transferring glioblastoma results to a cure for osteosarcoma

The same researchers wanted to see whether the cure rates of treating patients with glioblastoma was transferable to other cancer patients. In particular they were interested in patients with osteosarcoma, which is a similarly vicious cancer. Advanced osteosarcoma has a survival rate of 27% after 5 years. The researchers first did experiments with a human osteosarcoma cell line in tissue culture and at the same time a murine osteosarcoma cell line. Later they tested the action of oncolytic viruses Delta-24-RGD in a mouse model.

Experiments with osteosarcoma cells in tissue culture

The advantage of such experiments is that you can control all the parameters easily in a Petri dish. But critics say that this is far removed from osteosarcoma behavior in humans. Researchers found that the oncolytic virus Delta-24-RGD killed many osteosarcoma cells in vitro. They also were able to insert a new gene into the oncolytic virus, which was equally effective in killing osteosarcoma cells. They called this virus Delta-24-ACT.

Curing osteosarcoma in a mouse model

Next the researchers tested effectiveness of the oncolytic viruses, Delta-24-ACT and Delta-24-RDG in mice. They injected osteosarcoma cells from tissue culture into the tibia of mice. Tumor growth was subsequently measured. The experimental groups were given two oncolytic virus infections, the control group did not. On day 10 and 18 the researchers could see that controls had faster growing tumors compared to the experimental groups. The experimental groups had less tumor side effects. And the experimental mice survived longer than the controls. Further research showed that the oncolytic viruses produced a 4-1BBL protein, which stimulated the animals’ immune system to fight the osteosarcoma.

New immunotherapy approach against cancer: Effector T cells

Researchers could prove that in mice treated with oncolytic viruses it was the special protein (4-1BBL) that stimulated T lymphocytes to become killer T cells. They in turn attacked the osteosarcoma cells.

New immunotherapy approach against cancer: The need for human research

Doing research in humans is more complicated than in a mouse model. But in order to improve survival rates in patients with osteosarcoma human research is absolutely essential. However, research is complex and the effects of oncolytic viruses is only in the 20% range with regard to increasing survival. This requires more research. It may be that instead of oncolytic viruses a stimulatory protein would arm T cells to become killer T cells that fight the cancer.

New Immunotherapy Approach against Cancer

New Immunotherapy Approach against Cancer

Conclusion

Glioblastoma patients had a better survival after treatment with oncolytic viruses Delta-24-RGD. Researchers translated this type of research to another cancer, osteosarcoma. This also has a poor prognosis, Researchers did experiments in tissue culture and in a mouse model. They were able to show that oncolytic viruses produced a 4-1BBL protein, which stimulated the animals’ immune system to fight the osteosarcoma. Specifically, the protein armed T lymphocytes and turned them into killer T lymphocytes. These destroyed osteosarcoma cells in tissue culture or in the mouse model. It is encouraging to see positive results in a laboratory setting of a tissue culture. The step further in an animal experiment is also a positive achievement. More research will improve the cure rates of osteosarcoma. The effective treatment of osteosarcoma in humans is still far away! The next step is human research that shows improvements in patients’ survival rates.

Jun
18
2022

Tick Bites Can Render You Allergic to Red Meat

Tick bites can render you allergic to red meat. This comes from the alpha-gal syndrome, which is a type of food allergy. It is a tick with the name of Lone Star tick that transmits this syndrome in the southeastern United States.

Deer carries the Lone Star tick into other parts of the US. The bite of the tick transfers a sugar molecule called alpha-gal into the person’s body. Subsequently the person develops a sensitivity to red meat, like beef, pork and lamb. Red meat membranes are rich in the sugar alpha-gal. The allergy can also be directed against other mammal-related products like milk protein. Often the person is unaware of this type of allergy, alpha-gal syndrome. In this case people continue to get exposed to red meat and mammal products, and the immune reactions become more severe over time. Anaphylactic reactions that are not due to food allergies have a high probability to be due to alpha-gal syndrome.

More details about the alpha-gal syndrome

Alpha-gal is the abbreviation for Galactose-alpha-1,3-galactose, which is a carbohydrate. It is part of most mammalian cell membranes, except for primates. The immune system in humans recognizes it as a foreign body and produces anti-alpha-gal antibodies. It is the bite of the lone star tick in North America or the castor bean tick in Sweden that can start the allergy to alpha-gal. If a person has frequent anaphylactic reactions, the physician should think of alpha-gal syndrome, which could be the underlying cause.

Sensitization of the human host

When the lone star tick bites mice, rabbits or deer it takes up alpha-gal sugar. Subsequently, when the tick bites a human, the alpha-gal sugar is injected into the human host together with its saliva. This alarms the immune system and antibodies are produced. When the human host later consumes meals with red meat, the body reacts to the previous sensitization to alpha-gal sugar by the tick bite. The antibody response to alpha-gal sugar from further red meat meals becomes even stronger than before. The only relief for human host from immune reactions is to switch to a diet that is free of red meat.

Allergic symptoms

The alpha-gal allergy can manifest itself by skin rashes, welts, skin itchiness, swelling, shortness of breath, headaches, belly aches, diarrhea and vomiting. In serious cases an anaphylactic reaction can occur, which in some cases can be lethal.

Protein allergies versus carbohydrate allergies

Until 2009 medical science believed that allergies would only be due to proteins. One such example are allergic reactions to peanuts. It is the peanut protein that can cause allergies. Subsequently, the alpha-gal allergy became known, which involves the sugar galactose-alpha-1,3-galactose. This was the first sugar molecule that researchers could demonstrate to mount an allergic reaction, from which the human host could turn sick.

Tick Bites Can Render You Allergic to Red Meat

Tick Bites Can Render You Allergic to Red Meat

Conclusion

The Lone Star tick in the southeastern US carries the sugar galactose-alpha-1,3-galactose (for short alpha-gal) which originates from bites of mammals that are not primates (cattle, pigs and lambs). When the tick bites a human, the immune system produces antibodies against alpha-gal. This can produce skin rashes, welts, skin itchiness, swelling, shortness of breath, headaches, belly aches, diarrhea and vomiting. But when the person recovers from the tick bite, a lifelong sensitivity against reed meats remains. Every time a sensitized person consumes a red meat meal the same symptoms, as originally experienced from the tick bite, return.

Abstinence from red meat

The only remedy for the alpha-gal syndrome is to abstain from red meat. The cell membranes of the muscle of red meat contain the sugar alpha-gal. Seafood, chicken, eggs and turkey meats are OK for consumption. But the patient has to be diligent about not making any dietary mistakes. If intermittent red meat exposure continues, a more severe allergy can develop. These have the name of “anaphylactic reactions”, where the patient is in danger of suffocating or even die from it.

Apr
24
2022

Immune System Responses against Covid-19 or anti-Covid Vaccination

This article is about immune responses against Covid-19 or anti-Covid vaccination.

Investigations of the immune system showed that people who had Covid-19 and subsequently were vaccinated had an immune response that lasted for at least one year. In the following a discussion follows about the details why this is so.

The WHO confirmed more than 430 million cases of Covid-19 since the pandemic started. 4.9 billion people or 63.9% of the world population received at least one vaccination as of late February 2022.

How vaccination against Covid-19 works

The vaccine attacks the spike protein of the Covid-19 virus (SARS-CoV-2). The body produces antibodies through B cell activation. These are lymphocytes that originated from the bone marrow (hence B cells). They are capable of producing large amounts of antibodies that target the spike protein of the virus. It takes at least two vaccinations with the Pfizer vaccine to get a good antibody response. A booster vaccine brings the antibody titer even higher.

Cell-mediated response by killer T cells

When the virus enters a cell, the antibodies are no longer effective. Here the T killer cell comes into play. T killer cells are lymphocytes that were thymus processed (hence the name T cells) and activated by the vaccine. T killer cells function as a second line of defence. These immune cells specialize in detecting virus-infected cells. They immediately destroy these cells before the virus has a chance to replicate and shed more virus copies into the blood stream. It is the T cell response that prevents hospitalizations and deaths. Media coverage misled the public to believe that the bulk of the immune response would be from antibody production. However, the truth is that the T cell response is what is responsible for recognizing Covid-19 variants and why people survive Covid-19 with very little complications.

Long term immunity

When people had a Covid-19 infection the activated B cells that produced antibodies and the T killer cells get converted into memory cells. With a re-infection the memory cells can reactivate themselves to turn again into active B cells producing antibodies and T killer cells. The key for immunity with multiple vaccinations is also the memory cell pool. Those with two Pfizer vaccinations and a booster vaccine are much more immune to Covid-19 than those who only received one or two vaccinations.

Waning immunity

Following an infection with Covid-19 the immunity comes to a peak at 3 months after the start of the infection. The CDC said that people who are 90 days post-infection do not require a quarantine when they meet someone with an active Covid infection. By about 6 months immunity is declining. This is also true for people after double vaccination and a booster vaccine.

Hybrid immunity

The immune response after either a natural infection with Covid or following vaccinations with anti-Covid vaccines lasts only about 6 months. On the other hand, scientists observed that people recovering from Covid infections who subsequently received an anti-Covid vaccine just once had a very strong immune response that lasts for over a year. This is called hybrid immunity. This type of immune response triggers a very strong antibody response that is lasting longer. Immunologists are now researching whether the hybrid immunity is achievable with an improvement to vaccines. Results of this will not be available for several years.

Immune System Responses against Covid-19 or anti-Covid Vaccination

Immune System Responses against Covid-19 or anti-Covid Vaccination

Conclusion

The immune response to Covid lasts for about 6 months; the same is true for the immune response after a vaccination. But when a person comes down with Covid and he or she receives a vaccination one month later, the immune response lasts for over one year. Scientists call this hybrid immunity. At this point experts recommend to have a booster vaccine every 6 months. But immunologists are researching for ways to incorporate the mechanisms of hybrid immunity into vaccines, which likely will not be available for several years.

Avoid deliberate exposure to Covid-19

Some persons who read about the response after a Covid infection and a vaccination misinterpreted this. They took this as an “invitation” to expose themselves to the virus in the hope to boost their immunity. However, a Covid infection remains an illness with potentially serious consequences. There is no way to predict whether the course of an infection will be mild or extremely severe. In addition, a significant number of patients come down with “long covid” and struggle with breathing problems, lack of energy and more. Covid is still here, and our best protection remains the full vaccination including boosters and hygienic measures. This involves masks, frequent handwashing and disinfection of surfaces in daily life.

Mar
07
2022

T-Cell Immunotherapy Cures Chronic Lymphocytic Leukemia

T-cell immunotherapy cures chronic lymphocytic leukemia after 10 years. Researchers were able to use the blood of leukemia patients and modify immune cells to attack their cancer cells. Specifically, they introduced a chimeric antigen receptor into immune cells from patients in the lab. Subsequently they transfused the modified immune cells back into the leukemia patients. After 10 years researchers detected the same active cytotoxic T lymphocytes in both chronic lymphocytic leukemia patients, which contained the chimeric antigen receptor marker. This means that active cytotoxic lymphocytes, that also have the name of killer T cells, continued to eliminate any pathological cells from the lymphocytic leukemia patients.

The immune system explained

The immune system can respond with two major responses. The B lymphocytes originate from the bone marrow and turn into antibody producing plasma cells. With viruses this system works very well as it inactivates viruses that the immune system recognizes don’t belong into the body. The other branch of the immune system are the thymus-processed T cells. These are important to eradicate cancer cells. They are also called CD4 cells or cytotoxic T lymphocytes. Often tumor cells produce specific proteins that suppress the immune cells. But the researchers of these two chronic lymphocytic leukemia patients managed to introduce a chimeric antigen receptor into the CD4 cells that specifically targeted the leukemia cells. The immune system in these patients was working optimally and remained active for 10 years.

Some statistics regarding chronic lymphocytic leukemia

Here are some statistics of chronic lymphocytic leukemia (CLL). There were about 61,090 new cases of leukemia and 23,660 deaths from leukemia in 2021 in the US. Among these were 21,250 new cases of chronic lymphocytic leukemia (CLL). There were about 4,320 deaths from CLL. The average lifetime risk of getting CLL is 1 in 175 people or 0.5% of the population. The risk of getting CLL is slightly higher for men than women. CLL is a leukemia of older people, the average age at the time of diagnosis is 70 years. CLL is rare under the age of 40 and extremely rare in children.

Potential serious side effects of T-cell immunotherapy

Dr. David Porter, one of the authors of the study published in Nature said that this type of immunotherapy can have serious side effects. He added that therapies have become safer over the years. Oncologists are giving immunotherapies like the one which I described to hundreds and thousands of patients.

Here are the more common side effects.

  • The tumor lysis syndrome: when the tumor cells are all attacked at the same time, there is a lot of tumor cell destruction and the contents of the cells end up in the blood. This makes the patient rather sick for a few days. There can be serious electrolyte abnormalities that have to be countered with intravenous fluids. The toxins can also cause kidney damage, which physicians monitor closely.
  • Cytokine release syndrome: With this syndrome people develop a high fever, nausea, vomiting, much like a severe flu. They also develop muscle aches and joint pains. Patients can develop extremely low blood pressure. This occurs because fluid leaks into the lungs, which also causes problems breathing.
  • Neurologic toxicity: There can be a loss of speech and thought disturbances. Seizures can develop and the patients may turn comatose. Nevertheless most patients recover from this spontaneously.

Details of one case of CLL with successful treatment

Doug Olson was one of the patients who was studied in the publication in Nature. His original diagnosis was chronic lymphocytic leukemia when he was 49 years old. For 6 years he did not need much treatment. But then his leukemia flared up and chemotherapy got his CLL into remission for 5 years. Generally, leukemia behaves this way that treatment gets it into remission (meaning the leukemia is controlled). But on another occasion, it gets into a relapse, which means the leukemia flares up again. 11 years after the original diagnosis of the CLL there was a rapid decline due to another relapse. In a bone marrow biopsy 50% of the white blood cells were CLL and 50% were normal.

Infusion of CAR-T cells

He received his first infusion of CAR-T cells in September of 2010. Following this he became very sick and the oncologist hospitalized him for three days. One week later the oncologist could not find any more cancer cells in his body. But the cancer specialists were very reluctant to call it a cure at that time. Fast forward 10 years. And now there are still no cancer cells in Doug’s body. The blood analysis showed that active CAR-T cells are in Doug’s blood monitoring for him that no CLL cells reoccur. Now, 21 years after the initial diagnosis of his CLL the oncologists are convinced that the T-Cell Immunotherapy was what cured Doug.

Discussion

CLL is a special form of blood cancer. Chemotherapy has been successful in increasing survivor rates over the years. But the end of the patient with CLL comes from a final relapse of this leukemia form, which eventually no longer responds to chemotherapy. The researchers in this publication used a novel immunotherapy approach, where they introduced a chimeric antigen receptor into immune cells of patients in the lab. Subsequently they transfused this back into the leukemia patients.

T-cell Immunotherapy used surveillance T cells successfully

These modified immune cells became the “surveillance team” that eradicated new CLL cells and destroyed them on an ongoing basis. This immune therapy is getting rid of the last CLL tumor cell. The two cases described in this paper and investigated thoroughly after 10 years of immunotherapy intervention were completely free of CLL cells in their bone marrow biopsies. Two cases are not enough data, but it is a powerful result for a pilot study. Oncologists have to produce much larger clinical trials with more patients. This establishes that this new immunotherapy is superior to conventional chemotherapy and indeed prolongs survival compared to chemotherapy alone.

T-Cell Immunotherapy Cures Chronic Lymphocytic Leukemia

T-Cell Immunotherapy Cures Chronic Lymphocytic Leukemia

Conclusion

This pilot study showed that the immune system can be stimulated to suppress and eradicate leukemia (CLL) cancer cells. The authors introduced a chimeric antigen receptor into immune cells that were taken from patients. The researchers obtained blood samples. Then they introduced a chimeric antigen receptor into immune cells in the lab. Subsequently they injected these CAR-T cells back into the CLL patients. In these patients the CAR-T cells behaved like surveillance cells, which eradicated leukemia cancer cells on an ongoing basis. After 10 years of follow-up in two patients in this pilot study the clinicians could not find any CLL cancer cells in their bone marrows, but the CAR-T cells were still present. This type of study is encouraging as it is a model for immunotherapy of other cancers. It is a promising start, but obviously researchers need to do more studies to fine-tune cancer immunotherapy.

Feb
20
2022

Stimulating the Immune System Leads to Better Cancer Survival

Notably, conventional medicine has nothing to offer against advanced cancer, but stimulating the immune system leads to better cancer survival.

Dr. Hoffer’s survival experiment with incurable cancer patients

The following is a description of a 9-year follow-up of incurable cancer patients. They were given supplements known to stimulate the immune system and their survival rates were recorded. Ref. 1 describes the experiment by Dr. Hoffer, the father of orthomolecular medicine. It is important to realize that this is a branch of medicine that uses large doses of vitamins and minerals. This can rectify metabolic changes in various diseases. Dr. Hoffer treated 131 advanced cancer patients between 1976 and 1988 with a mixture of mega vitamins and minerals. There was a control group (not taking any supplements) and the experimental group.

Results regarding incurable cancer patients over 9 years

In fact, the results of this 9-year follow up study are depicted in the image below. The Y-axis represents the % of survival (at the zero point of time 100 % of each group were alive), the X-axis shows the time of survival in years. To clarify, the group of cancer patients taking meta vitamins is depicted with orange columns, the control group with blue columns. At 7 years of follow-up none of the controls survived. Explicitly, there was an 8-year survival advantage of the mega vitamin group versus the control group (control group 28% survival at year 1 of follow-up, mega vitamin group 34% survival at year 9 of follow-up).

List of supplements patients in the experimental group took daily

With this in mind, here is the detailed list of the supplements that Dr. Hoffer instructed his experimental group cancer patients to take daily.

Vitamin C, 10,000 to 40,000 mg orally daily; B3 vitamin (niacin or niacinamide) 300 to 3,000 mg; vitamin B6 (pyridoxine) 200 to 300 mg; folic acid 1 to 30 mg; vitamin E succinate 400 to 1,200 IU; Coenzyme Q10 300 to 600 mg; selenium 200 to 1,000 micrograms daily; zinc 25 to 100 mg; calcium and magnesium supplement (2:1 ratio); mixed carotenoids as carrot juice; multivitamins and minerals.

Ref. 1 (page 347) explains that in this case the Mayo Clinic did a study where they “duplicated” Dr. Hoffer’s study by using only high doses of vitamin C. It is important to realize that they failed to show any cancer fighting effect. However, they neglected to include all of the other cancer fighting supplements listed above. Vitamin C is an antioxidant that stimulates the immune system partially, but does not fight cancer by itself.

Strengthen your immune system by taking 14 supplements

In the following I like to share what I found when I investigated what supplements are necessary for optimal immune responses. The Linus Pauling Institute wrote a detailed review of the literature on the topic regarding “Immunity in depth”. It is published by the Oregon State University.

Essentially, there were 14 supplements that are listed below that were critical for the immune system to fully respond.

In the following I listed the 14 supplements, but, if they were present in Dr. Hoffer’s clinical cancer trial, I inserted them right after each item. 8 out of 14 supplements overlapped between Dr. Hoffer’s supplements and the supplements necessary to stimulate the immune system. There is a total overlap of 57%.

  • Vitamin A: mixed carotenoids as carrot juice
  • Vitamin B6: vitamin B6 (pyridoxine) 200 to 300 mg
  • B12 vitamin
  • Folic acid: folic acid 1 to 30 mg
  • Vitamin C: Vitamin C, 10,000 to 40,000 mg
  • D3 vitamin: Ray Schilling’s answer to Can vitamin D lower your risk of CoVID-19?
  • E vitamin: vitamin E succinate 400 to 1,200 IU
  • Iron
  • Copper
  • Selenium: selenium 200 to 1,000 micrograms daily
  • Magnesium: calcium and magnesium supplement (2:1 ratio)
  • Zinc: zinc 25 to 100 mg
  • Omega-3 fatty acids
  • Probiotics

Dr. Hoffer’s additional vitamins and minerals were: multivitamins and minerals; Coenzyme Q10 300 to 600 mg; and vitamin B3 (niacin or niacinamide) 300 to 3,000 mg. The 5 items that were missing in Dr. Hoffer’s clinical trial were vitamin B12, vitamin D3, iron, copper and probiotics.

Discussion

During the Covid epidemic the importance of the immune system for survival became very clear. One of the current mysteries regarding the immune system is why some people develop only very mild symptoms with Covid, while others get deadly sick. The other question has been around much longer: when it comes to cancer survival, why are there long-term survivors with some advanced cancers, but others perish. I believe that the key is how well the immune system is functioning. Dr. Hoffer’s end stage cancer survival trial achieved a 34% survival of cancer patients at year 9 of the clinical trial. At that time 100% of the control group were dead. Indeed, this is a remarkable finding.

Supplementation with vitamins and minerals prolonged cancer survival

The only difference was the supplementation with 57% of the Oregon University list of supplements necessary to stimulate the immune system. One of the more important supplements, namely vitamin D3 was not even included and yet there was a 34% survival in the experimental group after 9 years. Conventional medicine concentrates on surgery, radiotherapy and chemotherapy as the major therapeutic tools to fight cancer, but there is rarely if at all the mention of supplements. Ordinarily end stage cancer patients live on average 3 to 6 months.

Mayo Clinic’s attempt to jeopardize Dr. Hoffer’s cancer survival findings

When the Mayo Clinic got wind of Dr. Hoffer’s clinical trial they quickly attempted to “duplicate” the findings, but they left everything out except mega doses of vitamin C. Then they proclaimed that Dr. Hoffer’s data were flawed. In reality they failed to duplicate the findings, because they were poor copycats. Vitamin C is a powerful antioxidant, but it won’t be of help to cancer patients on its own. As the Oregon State University publication showed, there are 14 supplement that are necessary to work in symbiosis to stimulate to immune system to fight cancer.

It is significant that there was a 57% congruence between Dr. Hoffer’s list and the Oregon State University list of supplements to stimulate the immune system. Future cancer clinicians should revisit Dr. Hoffer’s clinical findings and finetune them to increase the long-term cancer survival times. For one, the supplement list should include vitamin D3, probiotics and omega-3 fatty acids.

Stimulating the Immune System Leads to Better Cancer Survival

Stimulating the Immune System Leads to Better Cancer Survival. (Image source). 

Conclusion

Dr. Hoffer did a clinical trial that lasted 9 years between 1976 and 1988. Some patients were recruited earlier than others, but all were observed for a total of 9 years. He treated end-stage cancer patients with vitamin and mineral supplements. A control group that did not take any supplements was included in the trial. After 9 years the experimental mega vitamin group had a survival of 34%. None of the controls that did not take any supplements were still alive after 7 years. The literature by the Oregon University showed that 14 supplements are necessary to support the immune system. Dr. Hoffer’s clinical trial used 57% of these supplements. I am postulating that the good results of the mega vitamin group with respect to cancer survival likely comes from a strengthening of the immune system with the supplements.

The future of cancer treatments

Cancer treatments are entering a new phase where with the help of multiple treatment modalities combined (photodynamic therapy or PDT, immunostimulation, oxygen therapy and low-dose laser activated chemotherapy) it is now possible to cure many cancers that were untreatable in the past. The tunnel vision approach of conventional oncology with only a combination of surgery, chemotherapy and radiotherapy is obsolete for cases where cancer has metastasized. At this point the methods described here are promising, but have to be still considered experimental until larger clinical trials confirm Dr. Hoffer’s findings.

Reference

Ref. 1: Andrew W. Saul, PhD: “The Orthomolecular Treatment of Chronic disease”, Basic Health Publications Inc., Laguna Beach, CA 92651, 2014.

Dr. Hoffer’s cancer survivor experiment (part of the above) was previously published here.

Jan
22
2022

Booster Vaccinations Against Covid-19 Variants are Very Effective

This article will inform you that booster vaccinations against Covid-19 variants are very effective. Studies in patients from Israel who received a third vaccination (booster shot) showed much less omicron infections. Researchers compared the number of omicron infections in patients with only two shots and another group with three vaccinations (regular vaccination+booster shot). In patients who had booster shots infection rates were 10-fold lower.

Antibody titers matter

What seems to be happening is that antibody titers against Covid-19 rise after each vaccination providing more and more protection against the virus. Patients in this study had 90% less Covid-19 infections after a booster (=3 shots with the Pfizer vaccine) when compared to a double vaccinated group. Researchers compared nursing home residents who were previously sick with Covid-19 versus those who were not. They did PCR tests in April or June of 2020 to identify that there was a past history of Covid-19 infection with a subsequent recovery. Within 3 weeks after one dosage of an anti Covid-19 vaccine their antibody tests rose to above 40,000 arbitrary units (AU) per milliliter. The threshold was 50 AU to be positive.

The Israeli experience

An Israeli study was published on Nov. 5, 2021. Researcher determined the antibody titers in blood samples after anti-Covid-19 vaccinations. They investigated the antibody titers after two vaccinations and compared them to antibody titers after three vaccinations. The latter vaccination is often referred to as a booster shot. 97 study participants had blood tests taken after two vaccinations with an average antibody titer of 440 AU/mL. Any value above 50 was considered to be seropositive. However, 10 to 19 days following the booster shot the average antibody titer rose to 25,468 AU/mL, which is an enormous increase.

Older age patients and kidney transplant patients responding to booster shots

After two vaccinations there were lower antibody titers in older patients aged 67-74 compared to patients age 18-55. But after the booster shot this age difference was no longer present. On the sideline the researcher also followed a group of kidney transplant patients. These would be considered to be patients with a chronic disease. Initially, following the standard two vaccinations these patients were negative for an antibody response. But after the third vaccination (booster shot) 49% of the kidney transplant patients showed a positive antibody test.

Antibody titers in patients with past natural Covid-19 infection

Researchers also investigated the antibody response of patients against the spike protein of Covid-19. As this publication shows after a natural Covid-19 infection plus one vaccination of the Pfizer/Moderna vaccine the antibody titer was 20,120 arbitrary units per milliliter. In contrast, the other group consisted of two vaccinations of the Pfizer/Moderna vaccine. They had antibody titers of 22,639 arbitrary units per milliliter. This was not significantly different from the first group. It also did not matter whether in the first group the prior natural Covid-19 infection was 1, 2, 3 or more months before the first vaccination with the Pfizer vaccine.

Discussion

New information emerged since the beginning of the Covd-19 pandemic. There was confusion about how often people would need a vaccination before they would be immune against Covid-19. After one vaccination with the Pfizer/Moderna vaccine the protection rate against Covid-19 is around 50%. After two vaccinations the protection rate is around 95%. Experience with the booster vaccination teaches us that the protection rate is almost 100%. There was no difference between the antibody response of the group with the age of 18-55 and the group with the age of 67-74 after the third shot (booster shot).

But there is a proviso: the immune system must be capable of full activation to produce enough antibodies by the B cells. B cells are the lymphocytes that traveled through  the bone marrow after which they started producing antibodies against viruses. As the results with the kidney transplant patients showed, only 49% of them were able to produce positive antibody titers. The reason for this is that kidney transplant patients must take immune system suppressing drugs to avoid a rejection of the kidney transplant.

Other reason for poor antibody response

Other patients with chronic diseases (diabetics, autoimmune disease patients etc.) and patients older than 60 can also have a weaker immune system. Part of this can be when one or more of the 14 supplements is missing that are necessary for a full immune response. It is important before the Covid-19 vaccinations to take the 14 necessary supplements to get a good antibody response.

Booster Vaccinations Against Covid-19 Variants are Very Effective

Booster Vaccinations Against Covid-19 Variants are Very Effective

Conclusion

Several studies showed that the antibody response after the anti-Covid-19 vaccine increases significantly. The measurements revealed that after two injections the antibody titer was 440 AU/mL. After the third (booster) injection the antibody titer increased significantly to 25,468 AU/mL. This explains why some people after one or two vaccinations still may be able to come down with Covid-19, but after the additional booster injection (3rd vaccination) the immune response in terms of antibody production is 58-fold higher than after the second vaccination. This gives the immune system a full response. Some patients with chronic diseases (obesity, diabetes, autoimmune diseases etc.) will have certain immune deficiencies. This explains a higher infection rate among these people as well as a higher mortality rate. We all can take the booster vaccine against Covid-19. In addition, we can take the 14 immune supplements to stimulate our immune system.

Dec
25
2021

Drugs that May be Useful in the Treatment of Covid-19

This article deals with drugs that may be useful in the treatment of Covid-19. There are several drugs that may be useful in the treatment of Covid-19. Lately an antidepressant like Luvox has been in the limelight. But antiviral drugs like ritonavir from Pfizer and remdesivir from Gilead Sciences also reduced the number of hospitalized patients with Covid-19. Finally, Merck introduced molnupiravir, an antiviral drug against Covid-19. The health authorities in Great Britain recently approved this drug for use in Covid-19 patients in Great Britain. Apart from drugs, vitamin D3 is still an important factor in preventing and treating Covid-19 as I will mention below.

Luvox for better survival from Covid-19

The Lancet published a study on January 2022 about the effect of Luvox on patients with Covid-19 symptoms. 741 patients received the antidepressant Luvox, 756 received placebo pills. In the Luvox group patients received 100 mg of Luvox twice per day for 10 days. From the Luvox treated patients only 11% had to go to tertiary care for treatment. In contrast, from the placebo group 16% had to go to tertiary care. There were 17 deaths in the Luvox group and 25 deaths in the placebo group. The Luvox group definitely showed a positive effect, although the results were not outstanding. In the following I am discussing other drugs that may be useful in the treatment of Covid-19.

Antiviral agent Remdesivir Improving survival from Covid-19

Here is a run-down of the survival statistics with remdesivir. This drug is manufactured by Gilead Sciences in cooperation with Pfizer. 541 patients received a loading dose of 200 mg on day 1. Subsequently they received 100 mg daily for another 9 days. 521 received placebo pills. The median recovery time in patients with remdesivir was 10 days. Those on placebo pills recovered only after 15 days. The mortality rates were 6.7% with remdesivir and 11.9% for the placebo group on day 15. There was a mortality of 11.4% with remdesivir and mortality of 15.2% with placebo pills on day 29. Although the effect between the remdesivir group and the placebo group was significant, the effect would not be enough to stop transmission of the virus on a population basis. Health Canada made the decision to use remdesivir in severe COVID-19 disease cases.

Merck introduced molnupiravir, another antiviral drug against Covid-19

Molnupiravir was approved in the UK as an antiviral drug for early and moderately severe cases of Covid-19. It is difficult to get data on the Merck’s molnupiravir drug. But this publication states that there is a 50% reduction of mild to moderate cases of Covid-19 cases with molnupiravir. Professor Peter Horby from the University of Oxford pointed out “the proportional reduction in the risk of hospitalisation or death is impressive. But it is important to remember that the absolute risks were 14% reduced to 7%, so quite a lot of people need to be treated to prevent one hospitalisation or death.” Others pointed out that the side-effects are very similar between placebo pills and molnupiravir pills. Overall molnupiravir appears to be a useful addition in the treatment of Covid-19.

Higher doses of vitamin D3 effective in treating and preventing Covid-19

Higher doses of vitamin D3 will mitigate the course of influenza and of Covid-19 coronavirus. Researchers outlined 3 mechanisms of how vitamin D works:

  • Maintaining tight epithelial junctions making it more difficult for the Covid-19 coronavirus to penetrate.“
  • Killing enveloped viruses through induction of cathelicidin and defensins.” These powerful antiviral polypeptides can kill viruses that have invaded the bloodstream within 1 to 2 days.”
  • And reducing production of proinflammatory cytokines by the innate immune system, thereby reducing the risk of a cytokine storm leading to pneumonia.” It is people who get the viral pneumonia that are at a high risk of death. By bringing the blood level up to the higher range of normal, between 50 and 80 ng/mL, patients that have encountered Covid-19 coronavirus are more likely to survive.
Drugs that May be Useful in the Treatment of Covid-19

Drugs that May be Useful in the Treatment of Covid-19

Conclusion

Beside distancing, the wearing of masks and frequent hand washing other methods are emerging to fight the virus that causes Covid-19. Vaccinations are very effective, although they are less effective in patients with a weakened immune system. But there are also drugs that may be useful in the treatment of Covid-19. Newer studies have shown that the antidepressant Luvox has a mild effect on helping Covid-19 patients. Last year remdesivir came into the market. And this year Merck added molnupiravir, another antiviral pill. We should not forget that vitamin D3 is an effective antiviral vitamin. But it is only effective, provided the patient takes enough vitamin D3. The blood level must reach the high normal level of 50-80 ng/mL vitamin D in the blood. Up to now vaccinations and booster shots are the most effective way to prevent Covid-19 infection. Vitamin D3 and molnupiravir are also very effective.

Part of the above was previously published here.

Incoming search terms:

Apr
03
2021

Pollen Allergies Make Covid-19 Infection Rates Worse

A recent study showed that pollen allergies make Covid-19 infection rates worse. This was published in the Proceedings of the National Academy of Sciences (PNAS) in March 2021.

The study determined that airborne pollen exposure enhances susceptibility to respiratory viral infections. Specifically, this includes SARS-CoV-2 infections as well. There were 130 test sites in 31 countries across 5 continents where measurements were made. Pollen concentration, air humidity and temperature, population density and lockdown effects on Covid-19 figures were measured. In countries with high pollen counts, high humidity and higher temperatures the Covid-19 rates were up to 44% higher than in countries with low pollen counts and colder climates.

PNAS study in more detail

In the following I am discussing the PNAS study in more detail. The SARS-CoV virus from the SARS epidemic in 2002 and the present SARS-CoV-2 virus are both capable to suppress the body’s interferon response to either virus. Additionally, there are intracellular proteins with the name “inflammasomes”, which the SARS-CoV-2 virus activates. With excessive activation this causes a cytokine storm, where inflammation spreads through the whole body. In the blood this leads to disseminated coagulopathy with multi organ failures. In the lungs severe acute respiratory syndrome occurs with severe viral pneumonia. On average mortality is 3.4%.

Tree and weed pollen can weaken the immune response

A study from South Korea examined what happens with exposure in asthmatic and allergic school-aged children to tree and weed pollen. https://www.sciencedirect.com/science/article/pii/S0091674919311856.

Allergic reactions make allergic children more prone to rhinovirus infections by reducing interferon in the blood. In addition, allergic reactions stimulate inflammasomes. When the SARS-CoV-2 virus affects an allergic child, both interferon depletion and excessive inflammasome activation make Covid-19 much more severe than in a child without allergies.

Warm spell in the Northern Hemisphere

On March 12, 2020 the WHO announced the Covid-19 pandemic when over 33% of the world’s countries were affected by the SARS-CoV-2 virus. However, at the same time there was a large-scale warm spell across the Northern Hemisphere with tree pollens being distributed across the same regions. This resulted in an exponential increase of Covid-19 cases. The researchers determined that the rates of Covid-19 infections were highest in areas where there was a high tree pollen count, crowding of people and high humidity/temperatures. The researchers used data from 248 airborne pollen monitoring sites in 31 countries. The highest exponential growth rates of Covid-19 occurred in the countries with the highest pollen counts. 6 out of 8 countries studied with regard to high pollen counts showed a significant correlation with regard to Covid-19 infections in excess to just person-to person virus transmission.

Population density and lockdown affecting daily SARS-CoV-2 virus rate

Some countries had a complete lockdown when rates of infection were high. This reduced transmission of the SARS-CoV-2 virus by 50%. Those countries with only a partial lockdown still experienced a significant reduction of infection rates. Rural areas had significantly less daily SARS-CoV-2 virus rates compared to very densely populated cities.

The researchers observed the following:

  • There was a lag effect of 4 days between the increase of pollen concentration in the air and infection increase with the SARS-CoV-2 virus
  • Pollens in the air caused infection rates of SARS-CoV-2 to rise by 10 to 30%, but in some high pollen areas even up to 44%.
  • Lockdowns reduced infection rates of SARS-CoV-2 by 50%
  • Higher environmental temperatures and higher humidity of the air also increased infection rates of SARS-CoV-2, although this may have occurred indirectly by increasing the pollen count in the air

Discussion

  1. The authors added a thorough discussion of the multiple factors regarding the increase of the infection rate of Covid-19 in 2020. They pointed out that climatic factors, air pollutants, or pollen, often exert their effects at the same time. They quantitated the contribution of the pollen count in the air easily. In contrast, pollution and climatic factors were not predictable in their effects.
  2. The infection rate of the SARS-CoV-2 virus always lagged behind the increase in pollen count by 4 days. The researchers observed this in all those countries where increasing pollen counts were a significant factor.
  3. The epithelial lining of the nasal cavity is the target of inhaled pollen. The researchers cited several publications regarding reduced interferon production as a result of exposure to pollens in the nasal mucous membranes. This leaves the immune system with a weakness, which the SARS-CoV-2 virus exploits. Recently specialists discussed the use of intravenous interferon to interrupt the cytokine storm caused by the SARS-CoV-2 virus.
Pollen Allergies Make Covid-19 Infection Rates Worse

Pollen Allergies Make Covid-19 Infection Rates Worse

Conclusion

In a recent publication researchers showed that pollen allergies make Covid-19 infection rates worse. The investigators had 130 test sites in 31 countries across 5 continents where they took measurements. They measured pollen concentration, air humidity, temperature, population density and lockdown effects on Covid-19 figures. In March of 2020 there was a warming trend in the Northern Hemisphere. This caused pollen counts to significantly rise in many countries. The result was that the mucous membranes in the nasal cavity weakened. This made it easier for the SARS-CoV-2 virus to multiply and invade. A lag period of 4 days occurred between the rise of the pollen count and the start of SARS-CoV-2 infection. The authors recommend that those who react to pollens in the air should wear pollen filtering masks in the spring season. This minimizes the danger of getting viral infections including SARS-CoV-2 infections following pollen exposure.

Jan
23
2021

Review about Human Oncolytic Virus Research in 2020

The British Medical Journal published a review about human oncolytic virus research in 2020. That is to say, the BMJ published this report in July 2020. On the negative side, the report is rather complex with many technical terms. With this in mind, I will keep it as simple as possible for this summary. Notably, oncolytic viruses are a new way of treating cancer. Adenovirus was the most common oncolytic virus in use by cancer research in the past 20 years. It must be remembered, researchers applied this to mainly melanoma and gastrointestinal cancers. In the past I discussed the use of oncolytic viruses in a related post.

History of licencing of oncolytic viruses

  1. The first oncolytic virus was licenced in 2004 in Latvia. This was an RNA virus derived from the native ECHO-7 strain of a picornavirus, called Rigvir. This oncolytic virus was approved for treating melanomas.
  2. Shortly after, in 2005, China approved a genetically modified adenovirus, H101 as an oncolytic virus. The approval was for the treatment of nasopharyngeal carcinoma combined with chemotherapy.
  3. In 2015, the U.S. the FDA approved T-VEC (Talimogene laherparepvec), an attenuated herpes simplex virus, type 1. This new oncovirus encodes granulocyte-macrophage colony-stimulating factor (GM-CSF). This is effective for the local treatment of inoperable, recurrent melanoma. It works for cutaneous, subcutaneous and nodal lesions in patients with recurrent melanoma after initial surgery.

Review of 20 years of human oncolytic virus research

The investigators reported about 97 clinical trials with oncolytic viruses performed between 2000 and 2020. That is to say, this involved 3233 patients with cancer. Most of these trials were phase I (50.5%) trials. There were an additional 6.2% studies, which were phase I/II. 11.3% were phase II clinical trials and only 2.1% were phase III clinical trials. 29.9 % of the literature did not specify what type of trial the investigations were about. However, they likely belonged into the phase I category as they reported on first trials of a therapy on man.

Oncolytic viruses derive from various types of viruses 

The number of studies that used a certain virus-derivative are included in brackets. It must be remembered that most of the studies dealt with six viruses: adenoviruses (30), herpes simplex virus (HSV-1) (23), reovirus (19), poxvirus (12), Newcastle disease virus (NDV) (5) and measles virus (3).

Stimulation of the immune system through GM-CSF

In 24 studies the researchers introduced GM-CSF transgene into an oncolytic virus. GM-CSF is a glycoprotein that is normally produced by granulocytes, a type of white blood cell. In this case, it stimulates dendritic cells, the precursors of T cells to produce killer T cells. Notably, this stimulates the immune system to better fight cancer.

Types of cancer targeted with oncolytic viruses

It is important to realize that the majority of the studies treated melanoma cases and gastrointestinal cancers. Namely, gastrointestinal cancers included esophageal cancer, gastric (stomach) cancer, colorectal cancer and pancreatic cancer. There were 30 studies involving melanomas with 1000 patients. There were 76 clinical trials regarding gastrointestinal cancers with 577 patients.

Moreover, other cancers where oncolytic viruses were studied were head and neck cancer (15 studies) breast and gynecological cancers (31 studies), genitourinary cancers (26 studies), and sarcomas (16 studies).

Other drugs given along with oncolytic viruses

It must be remembered that of the 97 total studies 62.9% were clinical trials where oncolytic viruses were the only therapy. In 37.1% of the studies physicians gave the oncolytic viruses along with cytotoxic chemotherapy, immunotherapy or radiotherapy.

Side effects of treatment with oncolytic viruses

The safety profile for treatment with oncolytic viruses appears to be tolerable. Fever was common, as were chills. Some patients reported nausea and vomiting, flu-like symptoms, fatigue and pain. But these symptoms disappeared within a few days.

Suppression of the bone marrow for a period of time was common, but more so when there was a combination of  oncolytic viruses with chemotherapy. None of the patients transmitted viruses to household contacts or the healthcare team.

Antitumor activity in clinical trials with involvement of oncolytic viruses

An analysis of clinical responses to oncolytic virus therapy showed the following:

  • 1% had disease control, which broke down as follows (items 2,3 and 4)
  • 4% complete control (=cure)
  • 7% partial control
  • 12% stable disease
  • 9% No response to treatment with oncolytic viruses

HSV-1 derived oncolytic viruses had the best response. The responses were not as good with adenovirus, reoviruses and with vaccinia viruses.

Discussion

Researchers of the BMJ publication analysed 97 clinical trials regarding oncolytic viruses over the past 20 years. This showed a number of points worth mentioning.

  1. The goal of oncolytic virus therapy is to induce tumor cell death. Physicians could achieve this indirectly by stimulating the immune system. Oncolytic viruses can stimulate both the innate immune system and the tumor-specific adaptive immune response.
  2. In the earlier years a lot of clinical trials investigated the safety of oncolytic viruses. But it became clear that oncolytic viruses were safe and fairly well tolerated.
  3. Many clinical trials involved oncogenic viruses with GM-CSF recombinant genes. This gene makes the oncolytic virus produce the GM-CSF protein, which stimulates dendritic cells. The end result is that the immune system produces more killer T cells that attack cancer cells, which results in higher cure rates.

More problems with oncolytic viruses

  1. There are still many questions about how oncolytic viruses stimulate the immune system. More basic research is necessary in this field. Despite 20 years of research the cure rate of 3.4% and achieving partial control and stable disease in another 17.7% is not acceptable. Perhaps combinations with other cancer treatment methods may improve the cancer cure rates. The reviewers suggested one such combination, namely immune checkpoint blockade with oncolytic virus therapy.
  2. There is no resolution about which route of administering oncolytic viruses is best. Intratumor application in melanoma cases seems the be optimal. But other solid tumors are difficult to reach. In these cases, intravenous applications were a choice. In this case oncolytic viruses experience dilution in the blood and do not have a high enough concentration when they arrive at the cancer.
Review about Human Oncolytic Virus Research in 2020

Review about Human Oncolytic Virus Research in 2020

Conclusion

In a review researchers discussed the use of oncolytic viruses in cancer therapy over 20 years . Oncolytic viruses are derivatives mostly from adenoviruses, herpes simplex virus (HSV-1), reovirus, poxvirus, Newcastle disease virus (NDV) and the measles virus. In various clinical trials researchers found that disease control was achieve in only 21.1% of treated cases. There was a cure rate of 3.4%, but another 17.7% had partial control of the cancer or stable disease. But 78.9% of treated patients showed no response to treatment with oncolytic viruses. Obviously more research is necessary to improve the cure rates in cancer patients treated with oncolytic viruses. Clinical trials with combinations of immune checkpoint blockade and oncolytic virus therapy would also be helpful. All in all, oncolytic therapy is at this point not yet an effective form of treatment for cancer.

Jan
09
2021

Melatonin Is More Than a Sleeping Aid

Notably, the January 2021 issue of the Life Extension magazine informs you that melatonin is more than a sleeping aid. It contains an interview between Dr. Roman Rozencwaig and a Life Extension (LE) magazine reporter. It must be remembered that Dr. Rozencwaig dedicated much of his career to the healing effects of melatonin. Another keypoint is that in 1987 Dr. Rozencwaig published a paper together with two other researchers. Specifically, it showed that melatonin production by the pineal gland declines in older age. Markedly, they stated that this is the reason why people age and why diseases of aging develop. Another key point is that Dr. Rozencwaig also stated that taking oral melatonin can promote a healthier life.

Melatonin deficiency causing aging and various illnesses

With the aging process the pineal gland calcifies and melatonin production is steadily declining. Surely, along with this is a deterioration of the circadian hormone rhythm. Meanwhile, the neuroendocrine system in the brain gets disorganized. Accordingly, this causes various diseases to occur. To emphasize, Dr. Rozencwaig says that a proper balance between melatonin and neurotransmitters is what we need to maintain health and longevity. As a result, a daily intake of melatonin supports healthy aging and longevity.

The many clinical effects of melatonin

Oral melatonin tablets help you to fall asleep easier, particularly the population that is older than 60 years.

But besides that, melatonin has many other clinical effects.

  • Melatonin improves immunity, which improves resistance against infections. It helps also in cancer prevention
  • Melatonin maintains the circadian hormone rhythm by synchronizing pituitary and hypothalamic hormone production
  • It protects the brain and may prevent Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, autism, and others
  • Melatonin modulates anti-inflammatory cytokinins in different diseases

Dr. Rozencwaig mentioned that melatonin slows down the aging process. There are multiple intertwining reasons for this. 

Melatonin’s actions against the aging process 

  • Melatonin regulates gene expression. This means that some signs and symptoms of aging can be reversed through genetic switches
  • Because melatonin regulates the immune response, the body is more protected against viral, bacterial and parasitic infections
  • Melatonin helps to overcome chronic inflammation that produces cytokines
  • Melatonin is also liver-protective through stimulation of an enzyme (AMPK). This enzyme regulates cellular metabolism.
  • There are other processes that melatonin is involved in: energy metabolism by protection and restoration of mitochondria.
  • Melatonin protects against osteoporosis by balancing and regulating bone formation versus bone loss.

More actions of melatonin

  • An important function of melatonin is the stimulation of antioxidant enzymes like glutathione peroxidase and superoxide dismutase (SOD)
  • Melatonin regulates sirtuins, which are proteins that maintain cellular health. They protect you from obesity, type 2 diabetes, cancer, heart attacks and strokes, dementia and more
  • As already mentioned, melatonin is a neuroprotective agent and may prevent Alzheimer’s and dementia
  • Melatonin stimulates apoptosis of cancer cells.
  • Oral health and melatonin are related. Melatonin suppresses herpes infections and periodontal disease. Melatonin prevents oral cancers to a certain degree. In addition, dental implants survive better when melatonin is present in saliva.

Prevention of cognitive decline

Dr. Rozencwaig mentioned that melatonin stops much of the cognitive decline of aging. To achieve this the following processes take place.

  1. Melatonin improves the sleeping pattern and increases the amount of REM sleep.
  2. During sleep melatonin removes toxic amyloid and tau proteins. We know that with Alzheimer’s disease these are the proteins that accumulate in the brain.
  3. Melatonin improves myelination of white matter in the brain. This prevents brain atrophy of old age.
  4. The brain is metabolically very active and produces toxic free radicals. But melatonin is a strong antioxidant dealing with free radicals. Melatonin can cross the blood brain barrier and stimulates enzyme production to eliminate toxic reactive oxygen species.
  5. Chronic inflammation also increases with age, but melatonin deals with this condition in the brain.
  6. Here are 3 subtypes of melatonin receptors. The body integrates the multitude of actions of melatonin with the help of these receptors.
Melatonin Is More Than a Sleeping Aid

Melatonin Is More Than a Sleeping Aid

Conclusion

Melatonin is a powerful antioxidant that has many other useful protective qualities as explained. The body integrates various functions like anti-aging, anti-free radical activity, neuroprotection in the brain and more. Melatonin even synchronizes pituitary and hypothalamic hormone production. This helps to integrate the effect of melatonin, which benefits the body in many ways. Melatonin prevents Parkinson’s and Alzheimer’s disease, multiple sclerosis, autism, obesity, type 2 diabetes, cancer, heart attacks, strokes and dementia. Melatonin production deteriorates from the age of about 60 onwards. It is important to supplement with melatonin at nighttime from that age on. Usually, you only need small amounts of melatonin, between 1mg and 3 mg at bedtime. This prevents most of the serious diseases of old age, stimulates your immune system and lets you age gracefully.

Incoming search terms: