Jul
24
2021

Questions About Covid-19 and the Variants

A detailed report by CNN discussed questions about Covid-19 and the variants. I reviewed this extensive material and report below some of the burning questions you may have.

Is it safe to go on a vacation?

The CDC recommends that you first get vaccinated against Covid-19, wait 2 weeks after your second shot and then start your vacation. Even after a full vaccination you are still required to wear a mask in airplanes or other public transportation.

Do fully vaccinated people still have to wear masks because of the Delta variants?

The Delta variant has occurred in all 50 states in the US. The CDC recommends to wear a mask in those states where there is a low vaccination rate. In these situations, there is a higher rate of Delta variants. As a result it is easier even for vaccinated people to catch a mild case of the Delta variant. When you see crowding, wear a mask or avoid the situation altogether.

When can younger kids get an anti-Covid-19 vaccine?

At the present time only children from 12 years and up are vaccinated with the Pfizer/BioNTech vaccine. There is a clinical trial ongoing where the same vaccine is tested on 6 months to 11-year-old children to see how well it is tolerated and how effective the vaccine protects against Covid-19.

What is the Delta variant?

It is the strain of the Covid-19 virus that originated in India. The Delta variant is spreading fast, and has reached all of the states in the US. In the beginning of July 2021, the Delta variant accounted for 51.7% of all the Covid-19 infections in the US. Just 2 weeks later on July 20, 2021 83.0% of all new Covid-19 infections in the US were due to the Delta variant. Questions about Covid-19 and the variants remain largely unanswered.

Could it be that we will need booster shots in the future?

Both the CDC and the FDA said that for now people who have been fully vaccinated are protected from variants. In Israel an investigation showed that in May 2021 the vaccine was still 95.3% effective in preventing all Covid-19 infections. Just one month later, June 3, 2021 Israel reported that due to the Delta variant there was now only 64% protection against Covid-19 infection in fully vaccinated people.

A booster vaccine for variants is in the works

Pfizer is already working on a booster shot against the variants of Covid-19 infections. It appears that the Pfizer vaccine gives good protective immunity against Covid-19 infections for at least 6 months. They started the vaccination program in Israel earlier than in the US and this may be the reason why immunity is now declining there. Most people in the US have not had their vaccination more than 6 months ago, so they should still be protected. This is the argumentation the CDC and FDA used.  However, it is good to know that in the near future there will be a booster vaccine available for variants, if necessary.

Is it safe to travel internationally?

Enquire before you leave about the regulations at your travel destination. Don’t travel until you had full vaccination and two weeks have passed from the last vaccination shot before you leave. This is the recommendation from the CDC.

Before you come back home have a PCR test for Covid-19 done 1 to 2 days before you board a plane to return home. In the US this is a requirement, but also a rule in many other countries. If you have no vaccination against Covid-19, the regulations are much tougher. You would be required to quarantine for 14 to 15 days in the destination country and also when you come back to your home country. Avoid the countries with a large number of infections with the Delta variant. It would make it more difficult for you to return home with increased testing. Keep in mind that even when you had a vaccination, you still need to wear a mask when in public transportation.

I had a Covid-19 infection. Should I still get an anti-Covid-19 vaccination?

Yes, it still makes sense to get a vaccination against Covid-19, because without this you may catch Covid-19 a second time. You would go for vaccination 4 weeks after recovery from Covid-19. If you had a treatment with monoclonal antibodies, wait for 90 days before you get your vaccination.

What are the “underlying conditions” that make Covid-19 more dangerous?

More than 40% of the US adults have at least one condition that puts them at higher risk for a poor outcome when they get Covd-19 according to the CDC. These underlying conditions are heart disease, obesity, chronic obstructive pulmonary disease (COPD), diabetes and chronic kidney disease. In addition, people with cancer, poorly controlled HIV, people with sickle cell anemia, organ transplants or any autoimmune disease are also at a higher risk of catching Covid-19. All of these chronic conditions have circulating cytokines in their bloodstream. With a Covid-19 infection the cytokine storm becomes overwhelming.

With an underlying condition the course of Covid-19 is much more severe

The course of the disease in these risk groups therefore is much more severe than in the average person without an underlying condition. When patients with underlying conditions get Covid-19 they are 6-times more likely to end up in hospital and 12-times more likely to die from it. There are still questions about Covid-19 and the variants. Young and healthy adolescents who get Covid-19 rarely die from it, but they are more likely to develop long-term effects from the disease.

Which kills more people, the flu or Covid-19?

Covid-19 has killed more people in one year than the flu did through the past 5 flu seasons.

Other reasons are that the coronavirus spreads twice as fast as the flu virus does. The incubation time for the coronavirus is up to 14 days, the flu virus is much shorter. It is the length of the incubation time that determines how many people come down with an infection. Longer incubation times lead to more infections.

Is there a fourth Covid-19 wave?

Recently there have been outbreaks of the Delta variant of Covid-19 in the unvaccinated population. As the most vulnerable received the Covid-19 vaccine first and gradually also younger people, the Delta variant can now multiply more in the unvaccinated, younger persons. It is important and urgent that non-vaccinated people receive the vaccinations against Covid-19. This makes it more difficult for the virus to spread, which eventually will lead to a stop of reinfections with the virus. Should we use face masks again when the Delta variant is coming to a town? You find the answer in this link.

Questions About Covid-19 and the Variants

Questions About Covid-19 and the Variants

Conclusion

CNN published pertinent questions and answers about Covid-19 and attached links to the answers. It is clear that you are safest when you have a vaccination with a Pfizer or Moderna vaccine. Other vaccines are not as safe, particularly the AstraZeneca vaccine, which can cause clots especially in women. Unfortunately, media reports led to some people thinking that all the vaccines would be unsafe and this led to a slowdown of the vaccination program of various governments. This is unfortunate as the virus keeps on mutating with the latest mutant being the Delta variant. As mentioned, the mutant can multiply in non-vaccinated people, which makes it important that all of the non-vaccinated people get vaccinated.

Anti-vaxxers and exaggerated media reports

Part of the problem are the anti-vaxxers who refuse vaccinations because of their belief. The social media are also partially to blame for the low vaccination rate. They exaggerated the problems centering around the AstraZeneca vaccine, and as a result many people did not want any vaccine at all and were fearful to receive any vaccine. The end result is that the Delta variant and any future variants have a fertile breeding ground in unvaccinated people. I hope that common sense will eventually prevail.

In the meantime, we have to stay safe: masks are still important to protect us, especially in crowded conditions. Hygienic measures such as handwashing and disinfecting are still a powerful tool for disease prevention.  Staying home when we feel unwell is another tool to prevent the spread of disease.

May
29
2021

Anti-Viral Photodynamic Therapy (PDT) Can Treat Covid-19 Successfully

A German research team wanted to test whether an anti-viral photodynamic therapy (PDT) can treat Covid-19 successfully. They went to Tehran during the first Covid-19 peak in 2020 and did the following experiment.

All patients of the clinical trial were in the early stage of Covid-19. The researchers compared 20 patients (experimental group who had photodynamic therapy) with 20 patients that served as a control.

Results of the study

The results were as follows (initial symptoms compared to 5 days later):

  • 18 patients had a high fever, but 5 days after PDT they were afebrile
  • 17 patients had a severe cough; after 5 days of PDT only 6 patients did
  • There were 19 patients initially with breathing problems. After 5 days of PDT only 5 patients still had acute breathing problems.
  • Less severe symptoms like headaches, sleep disturbance and fatigue initially improved rapidly with PDT in about half of the patients.

It is interesting to note that none of the control group patients showed signs of improvements of the Covid-19 symptoms. Two patients of the control group had to be transferred into the ICU ward of a hospital. None of the control patients showed a reduction of the viral load.

PCR testing to verify effectiveness of anti-viral photodynamic therapy

A highly specific and sensitive polymerase chain reaction with the name QPCR determines the viral RNA in the subject. The researchers measured the QPCR daily in every subject. On day 1 only 8 patients had a QPCR value of 30 or more. In contrast, on day 5 there were 14 subjects who tested negative for the SARS-CoV-2 virus and 5 patients had a QPCR value of more than 30. A value of more than 30 was considered to indicate a low virus concentration. Expressed in another way, 95% of 20 patients were cured of Covid-19, while 100% of the control group deteriorated because of the SARS-CoV-2 virus.

How does the antiviral phototherapy work?

Photodynamic therapy (PDT) has shown to be effective in the past against bacteria, parasites and viruses. An important application in transfusion medicine is the inactivation of viruses and bacteria in stored red blood cell units. The laboratory physician adds a small amount of vitamin B2 (riboflavin) to red blood cell units. Treatment with ultraviolet light for a short period follows, which inactivates viruses and bacteria. Vitamin B2 is harmless and does not need removal.

The same technique was effective to remove Middle East respiratory syndrome coronavirus (MERS-CoV) from plasma products.

Researchers from the Colorado State University combined riboflavin and UV radiation to clear the SAARS-CoV-2 virus from plasma and platelets successfully.

Activation of riboflavin by UV light and blue light kills the SARS-CoV-2 virus

Riboflavin, which also goes by the name vitamin B2, is a photosensitizer. The light absorption of riboflavin is in the 375 nm (UVA light) and in the 450 nm (blue light) range. Dr. Weber, an internist and engineer from Germany showed that you can use UVA light and blue light to activate riboflavin. Laser light stimulation of riboflavin releases reactive oxygen species (ROS), which damages the virus proteins, lipids and nucleic acids. The patient takes 100 mg of riboflavin-5-phosphate orally. In addition, the patient also sprays a riboflavin solution to the inside of the nose and on the tongue.

Laser applicators cause riboflavin to release oxygen species (ROS)

Special laser applicators for the nose and for the mouth/throat produce a mix of UVA and blue laser light. This stimulates riboflavin from the blood in these regions to release reactive oxygen species. In addition, the patient applies a special laser watch (the name of it is “Laser Watch Spectra”) to the volar aspect of the wrist. This watch is sold by Weber Medical Systems GmbH, Germany. The location of the ulnar and radial arteries is at the volar aspect of the wrist. When the wrist watch is applied there, the riboflavin in the blood stream of the arteries releases oxygen species (ROS). This in turn kills the Covid-19 coronavirus.

Antiviral phototherapy to eradicate the SARS-CoV-2 virus in humans

A German research team under Dr. Weber went to Tehran, Persia during the first SARS-CoV-2 virus epidemic. They did a pilot study to show that photodynamic therapy can treat Covid-19 successfully. They divided 40 confirmed Covid-19 patients in an early stage into two groups. 20 patients were the treatment group and the other 20 patients made up the control. As already discussed before there were striking differences in the treatment group versus the control group. The procedure was simple.

Treatment regimen

First the patient takes 100 mg of vitamin B2 (as Roboflavin-5-phosphate). 15 to 30 minutes later vitamin B2 is circulating in the blood. The patient now attaches the laser wrist watch to one of the wrists and the mouth/throat applicator for 1 hour. The next application is a nose applicator for 1 hour. This completes the laser treatment for the day. The patients received the same treatment 5 days in a row. As the tables of the first link showed the treatment group experienced significant healing from Covid-19. The control group did not, but rather deteriorated.

Anti-Viral Photodynamic Therapy (PDT) Can Treat Covid-19 Successfully

Anti-Viral Photodynamic Therapy (PDT) Can Treat Covid-19 Successfully

Conclusion

A combined UVA laser and a blue laser treatment matching the light absorption of riboflavin cured 95% of Covid-19 patients. A German research group under Dr. Weber went to Tehran, Persia in the middle of the first Covid-19 wave. An experimental group received laser treatment of the nasal passages and the tongue and throat for 1 hour each. In addition, the researchers treated the ulnar and radial arteries with UVA and blue laser light as well. This treated any coronaviruses that leaked into the general circulation.

Cure of Covid-19 in 5 days

After only 5 days of this therapy there was a 95% cure of Covid-19. In contrast, 100% of the control group without laser treatment remained very symptomatic. Two patients of the control group required transfer into the ICU. None of the control patients showed a reduction of the viral load while 95% of the treatment group did. In the meantime, the researchers repeated the experiment with 50 patients in each group and obtained the same result (personal communication from Dr. Weber).

This is the first time that a research group was able to report a cure for Covid-19.

Incoming search terms:

Apr
03
2021

Pollen Allergies Make Covid-19 Infection Rates Worse

A recent study showed that pollen allergies make Covid-19 infection rates worse. This was published in the Proceedings of the National Academy of Sciences (PNAS) in March 2021.

The study determined that airborne pollen exposure enhances susceptibility to respiratory viral infections. Specifically, this includes SARS-CoV-2 infections as well. There were 130 test sites in 31 countries across 5 continents where measurements were made. Pollen concentration, air humidity and temperature, population density and lockdown effects on Covid-19 figures were measured. In countries with high pollen counts, high humidity and higher temperatures the Covid-19 rates were up to 44% higher than in countries with low pollen counts and colder climates.

PNAS study in more detail

In the following I am discussing the PNAS study in more detail. The SARS-CoV virus from the SARS epidemic in 2002 and the present SARS-CoV-2 virus are both capable to suppress the body’s interferon response to either virus. Additionally, there are intracellular proteins with the name “inflammasomes”, which the SARS-CoV-2 virus activates. With excessive activation this causes a cytokine storm, where inflammation spreads through the whole body. In the blood this leads to disseminated coagulopathy with multi organ failures. In the lungs severe acute respiratory syndrome occurs with severe viral pneumonia. On average mortality is 3.4%.

Tree and weed pollen can weaken the immune response

A study from South Korea examined what happens with exposure in asthmatic and allergic school-aged children to tree and weed pollen. https://www.sciencedirect.com/science/article/pii/S0091674919311856.

Allergic reactions make allergic children more prone to rhinovirus infections by reducing interferon in the blood. In addition, allergic reactions stimulate inflammasomes. When the SARS-CoV-2 virus affects an allergic child, both interferon depletion and excessive inflammasome activation make Covid-19 much more severe than in a child without allergies.

Warm spell in the Northern Hemisphere

On March 12, 2020 the WHO announced the Covid-19 pandemic when over 33% of the world’s countries were affected by the SARS-CoV-2 virus. However, at the same time there was a large-scale warm spell across the Northern Hemisphere with tree pollens being distributed across the same regions. This resulted in an exponential increase of Covid-19 cases. The researchers determined that the rates of Covid-19 infections were highest in areas where there was a high tree pollen count, crowding of people and high humidity/temperatures. The researchers used data from 248 airborne pollen monitoring sites in 31 countries. The highest exponential growth rates of Covid-19 occurred in the countries with the highest pollen counts. 6 out of 8 countries studied with regard to high pollen counts showed a significant correlation with regard to Covid-19 infections in excess to just person-to person virus transmission.

Population density and lockdown affecting daily SARS-CoV-2 virus rate

Some countries had a complete lockdown when rates of infection were high. This reduced transmission of the SARS-CoV-2 virus by 50%. Those countries with only a partial lockdown still experienced a significant reduction of infection rates. Rural areas had significantly less daily SARS-CoV-2 virus rates compared to very densely populated cities.

The researchers observed the following:

  • There was a lag effect of 4 days between the increase of pollen concentration in the air and infection increase with the SARS-CoV-2 virus
  • Pollens in the air caused infection rates of SARS-CoV-2 to rise by 10 to 30%, but in some high pollen areas even up to 44%.
  • Lockdowns reduced infection rates of SARS-CoV-2 by 50%
  • Higher environmental temperatures and higher humidity of the air also increased infection rates of SARS-CoV-2, although this may have occurred indirectly by increasing the pollen count in the air

Discussion

  1. The authors added a thorough discussion of the multiple factors regarding the increase of the infection rate of Covid-19 in 2020. They pointed out that climatic factors, air pollutants, or pollen, often exert their effects at the same time. They quantitated the contribution of the pollen count in the air easily. In contrast, pollution and climatic factors were not predictable in their effects.
  2. The infection rate of the SARS-CoV-2 virus always lagged behind the increase in pollen count by 4 days. The researchers observed this in all those countries where increasing pollen counts were a significant factor.
  3. The epithelial lining of the nasal cavity is the target of inhaled pollen. The researchers cited several publications regarding reduced interferon production as a result of exposure to pollens in the nasal mucous membranes. This leaves the immune system with a weakness, which the SARS-CoV-2 virus exploits. Recently specialists discussed the use of intravenous interferon to interrupt the cytokine storm caused by the SARS-CoV-2 virus.
Pollen Allergies Make Covid-19 Infection Rates Worse

Pollen Allergies Make Covid-19 Infection Rates Worse

Conclusion

In a recent publication researchers showed that pollen allergies make Covid-19 infection rates worse. The investigators had 130 test sites in 31 countries across 5 continents where they took measurements. They measured pollen concentration, air humidity, temperature, population density and lockdown effects on Covid-19 figures. In March of 2020 there was a warming trend in the Northern Hemisphere. This caused pollen counts to significantly rise in many countries. The result was that the mucous membranes in the nasal cavity weakened. This made it easier for the SARS-CoV-2 virus to multiply and invade. A lag period of 4 days occurred between the rise of the pollen count and the start of SARS-CoV-2 infection. The authors recommend that those who react to pollens in the air should wear pollen filtering masks in the spring season. This minimizes the danger of getting viral infections including SARS-CoV-2 infections following pollen exposure.

Incoming search terms:

Jan
23
2021

Review about Human Oncolytic Virus Research in 2020

The British Medical Journal published a review about human oncolytic virus research in 2020. That is to say, the BMJ published this report in July 2020. On the negative side, the report is rather complex with many technical terms. With this in mind, I will keep it as simple as possible for this summary. Notably, oncolytic viruses are a new way of treating cancer. Adenovirus was the most common oncolytic virus in use by cancer research in the past 20 years. It must be remembered, researchers applied this to mainly melanoma and gastrointestinal cancers. In the past I discussed the use of oncolytic viruses in a related post.

History of licencing of oncolytic viruses

  1. The first oncolytic virus was licenced in 2004 in Latvia. This was an RNA virus derived from the native ECHO-7 strain of a picornavirus, called Rigvir. This oncolytic virus was approved for treating melanomas.
  2. Shortly after, in 2005, China approved a genetically modified adenovirus, H101 as an oncolytic virus. The approval was for the treatment of nasopharyngeal carcinoma combined with chemotherapy.
  3. In 2015, the U.S. the FDA approved T-VEC (Talimogene laherparepvec), an attenuated herpes simplex virus, type 1. This new oncovirus encodes granulocyte-macrophage colony-stimulating factor (GM-CSF). This is effective for the local treatment of inoperable, recurrent melanoma. It works for cutaneous, subcutaneous and nodal lesions in patients with recurrent melanoma after initial surgery.

Review of 20 years of human oncolytic virus research

The investigators reported about 97 clinical trials with oncolytic viruses performed between 2000 and 2020. That is to say, this involved 3233 patients with cancer. Most of these trials were phase I (50.5%) trials. There were an additional 6.2% studies, which were phase I/II. 11.3% were phase II clinical trials and only 2.1% were phase III clinical trials. 29.9 % of the literature did not specify what type of trial the investigations were about. However, they likely belonged into the phase I category as they reported on first trials of a therapy on man.

Oncolytic viruses derive from various types of viruses 

The number of studies that used a certain virus-derivative are included in brackets. It must be remembered that most of the studies dealt with six viruses: adenoviruses (30), herpes simplex virus (HSV-1) (23), reovirus (19), poxvirus (12), Newcastle disease virus (NDV) (5) and measles virus (3).

Stimulation of the immune system through GM-CSF

In 24 studies the researchers introduced GM-CSF transgene into an oncolytic virus. GM-CSF is a glycoprotein that is normally produced by granulocytes, a type of white blood cell. In this case, it stimulates dendritic cells, the precursors of T cells to produce killer T cells. Notably, this stimulates the immune system to better fight cancer.

Types of cancer targeted with oncolytic viruses

It is important to realize that the majority of the studies treated melanoma cases and gastrointestinal cancers. Namely, gastrointestinal cancers included esophageal cancer, gastric (stomach) cancer, colorectal cancer and pancreatic cancer. There were 30 studies involving melanomas with 1000 patients. There were 76 clinical trials regarding gastrointestinal cancers with 577 patients.

Moreover, other cancers where oncolytic viruses were studied were head and neck cancer (15 studies) breast and gynecological cancers (31 studies), genitourinary cancers (26 studies), and sarcomas (16 studies).

Other drugs given along with oncolytic viruses

It must be remembered that of the 97 total studies 62.9% were clinical trials where oncolytic viruses were the only therapy. In 37.1% of the studies physicians gave the oncolytic viruses along with cytotoxic chemotherapy, immunotherapy or radiotherapy.

Side effects of treatment with oncolytic viruses

The safety profile for treatment with oncolytic viruses appears to be tolerable. Fever was common, as were chills. Some patients reported nausea and vomiting, flu-like symptoms, fatigue and pain. But these symptoms disappeared within a few days.

Suppression of the bone marrow for a period of time was common, but more so when there was a combination of  oncolytic viruses with chemotherapy. None of the patients transmitted viruses to household contacts or the healthcare team.

Antitumor activity in clinical trials with involvement of oncolytic viruses

An analysis of clinical responses to oncolytic virus therapy showed the following:

  • 1% had disease control, which broke down as follows (items 2,3 and 4)
  • 4% complete control (=cure)
  • 7% partial control
  • 12% stable disease
  • 9% No response to treatment with oncolytic viruses

HSV-1 derived oncolytic viruses had the best response. The responses were not as good with adenovirus, reoviruses and with vaccinia viruses.

Discussion

Researchers of the BMJ publication analysed 97 clinical trials regarding oncolytic viruses over the past 20 years. This showed a number of points worth mentioning.

  1. The goal of oncolytic virus therapy is to induce tumor cell death. Physicians could achieve this indirectly by stimulating the immune system. Oncolytic viruses can stimulate both the innate immune system and the tumor-specific adaptive immune response.
  2. In the earlier years a lot of clinical trials investigated the safety of oncolytic viruses. But it became clear that oncolytic viruses were safe and fairly well tolerated.
  3. Many clinical trials involved oncogenic viruses with GM-CSF recombinant genes. This gene makes the oncolytic virus produce the GM-CSF protein, which stimulates dendritic cells. The end result is that the immune system produces more killer T cells that attack cancer cells, which results in higher cure rates.

More problems with oncolytic viruses

  1. There are still many questions about how oncolytic viruses stimulate the immune system. More basic research is necessary in this field. Despite 20 years of research the cure rate of 3.4% and achieving partial control and stable disease in another 17.7% is not acceptable. Perhaps combinations with other cancer treatment methods may improve the cancer cure rates. The reviewers suggested one such combination, namely immune checkpoint blockade with oncolytic virus therapy.
  2. There is no resolution about which route of administering oncolytic viruses is best. Intratumor application in melanoma cases seems the be optimal. But other solid tumors are difficult to reach. In these cases, intravenous applications were a choice. In this case oncolytic viruses experience dilution in the blood and do not have a high enough concentration when they arrive at the cancer.
Review about Human Oncolytic Virus Research in 2020

Review about Human Oncolytic Virus Research in 2020

Conclusion

In a review researchers discussed the use of oncolytic viruses in cancer therapy over 20 years . Oncolytic viruses are derivatives mostly from adenoviruses, herpes simplex virus (HSV-1), reovirus, poxvirus, Newcastle disease virus (NDV) and the measles virus. In various clinical trials researchers found that disease control was achieve in only 21.1% of treated cases. There was a cure rate of 3.4%, but another 17.7% had partial control of the cancer or stable disease. But 78.9% of treated patients showed no response to treatment with oncolytic viruses. Obviously more research is necessary to improve the cure rates in cancer patients treated with oncolytic viruses. Clinical trials with combinations of immune checkpoint blockade and oncolytic virus therapy would also be helpful. All in all, oncolytic therapy is at this point not yet an effective form of treatment for cancer.

Jan
09
2021

Melatonin Is More Than a Sleeping Aid

Notably, the January 2021 issue of the Life Extension magazine informs you that melatonin is more than a sleeping aid. It contains an interview between Dr. Roman Rozencwaig and a Life Extension (LE) magazine reporter. It must be remembered that Dr. Rozencwaig dedicated much of his career to the healing effects of melatonin. Another keypoint is that in 1987 Dr. Rozencwaig published a paper together with two other researchers. Specifically, it showed that melatonin production by the pineal gland declines in older age. Markedly, they stated that this is the reason why people age and why diseases of aging develop. Another key point is that Dr. Rozencwaig also stated that taking oral melatonin can promote a healthier life.

Melatonin deficiency causing aging and various illnesses

With the aging process the pineal gland calcifies and melatonin production is steadily declining. Surely, along with this is a deterioration of the circadian hormone rhythm. Meanwhile, the neuroendocrine system in the brain gets disorganized. Accordingly, this causes various diseases to occur. To emphasize, Dr. Rozencwaig says that a proper balance between melatonin and neurotransmitters is what we need to maintain health and longevity. As a result, a daily intake of melatonin supports healthy aging and longevity.

The many clinical effects of melatonin

Oral melatonin tablets help you to fall asleep easier, particularly the population that is older than 60 years.

But besides that, melatonin has many other clinical effects.

  • Melatonin improves immunity, which improves resistance against infections. It helps also in cancer prevention
  • Melatonin maintains the circadian hormone rhythm by synchronizing pituitary and hypothalamic hormone production
  • It protects the brain and may prevent Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, autism, and others
  • Melatonin modulates anti-inflammatory cytokinins in different diseases

Dr. Rozencwaig mentioned that melatonin slows down the aging process. There are multiple intertwining reasons for this. 

Melatonin’s actions against the aging process 

  • Melatonin regulates gene expression. This means that some signs and symptoms of aging can be reversed through genetic switches
  • Because melatonin regulates the immune response, the body is more protected against viral, bacterial and parasitic infections
  • Melatonin helps to overcome chronic inflammation that produces cytokines
  • Melatonin is also liver-protective through stimulation of an enzyme (AMPK). This enzyme regulates cellular metabolism.
  • There are other processes that melatonin is involved in: energy metabolism by protection and restoration of mitochondria.
  • Melatonin protects against osteoporosis by balancing and regulating bone formation versus bone loss.

More actions of melatonin

  • An important function of melatonin is the stimulation of antioxidant enzymes like glutathione peroxidase and superoxide dismutase (SOD)
  • Melatonin regulates sirtuins, which are proteins that maintain cellular health. They protect you from obesity, type 2 diabetes, cancer, heart attacks and strokes, dementia and more
  • As already mentioned, melatonin is a neuroprotective agent and may prevent Alzheimer’s and dementia
  • Melatonin stimulates apoptosis of cancer cells.
  • Oral health and melatonin are related. Melatonin suppresses herpes infections and periodontal disease. Melatonin prevents oral cancers to a certain degree. In addition, dental implants survive better when melatonin is present in saliva.

Prevention of cognitive decline

Dr. Rozencwaig mentioned that melatonin stops much of the cognitive decline of aging. To achieve this the following processes take place.

  1. Melatonin improves the sleeping pattern and increases the amount of REM sleep.
  2. During sleep melatonin removes toxic amyloid and tau proteins. We know that with Alzheimer’s disease these are the proteins that accumulate in the brain.
  3. Melatonin improves myelination of white matter in the brain. This prevents brain atrophy of old age.
  4. The brain is metabolically very active and produces toxic free radicals. But melatonin is a strong antioxidant dealing with free radicals. Melatonin can cross the blood brain barrier and stimulates enzyme production to eliminate toxic reactive oxygen species.
  5. Chronic inflammation also increases with age, but melatonin deals with this condition in the brain.
  6. Here are 3 subtypes of melatonin receptors. The body integrates the multitude of actions of melatonin with the help of these receptors.
Melatonin Is More Than a Sleeping Aid

Melatonin Is More Than a Sleeping Aid

Conclusion

Melatonin is a powerful antioxidant that has many other useful protective qualities as explained. The body integrates various functions like anti-aging, anti-free radical activity, neuroprotection in the brain and more. Melatonin even synchronizes pituitary and hypothalamic hormone production. This helps to integrate the effect of melatonin, which benefits the body in many ways. Melatonin prevents Parkinson’s and Alzheimer’s disease, multiple sclerosis, autism, obesity, type 2 diabetes, cancer, heart attacks, strokes and dementia. Melatonin production deteriorates from the age of about 60 onwards. It is important to supplement with melatonin at nighttime from that age on. Usually, you only need small amounts of melatonin, between 1mg and 3 mg at bedtime. This prevents most of the serious diseases of old age, stimulates your immune system and lets you age gracefully.

Dec
26
2020

Hormones Play an Important Role in Survival from Covid-19

I am describing here that hormones play an important role in survival from Covid-19. There are two publications that illustrate that point.

Estrogens protect women against Covid-19

A study from Dec. 4, 2020 covering 17 countries and involving nearly 70,000 women discovered these principal findings.

  • Women aged 20 to 50 have moderately higher Covid-19 infection rates than men
  • In all of the age groups men have higher mortality rates than women
  • Beyond the age of 50 the fatality rate from Covid-19 is 50% higher in men than that of women
  • Postmenopausal women above the age of 50 and on estradiol supplementation had 50% less mortality from Covid-19 than women without estradiol supplementation

The researchers said about the study: “In a nutshell, it’s likely that the apparently protective effects of 17β-estradiol, a naturally occurring, abundant female hormone, relate to a key property of this molecule: it attenuates the so-called “cytokine storm” that’s thought to underlie much of the cellular-scale and organ/tissue-level damage wrought by a SARS-CoV-2 infection, via dysregulation of a patient’s immune response.”

Men need enough testosterone to fight Covid-19

Another study from September 17, 2020 pointed out that males have much worse outcomes with Covid-19 than females. Men are affected by Covid-19 twice as often as females and they experience a much more severe course with a higher mortality. The authors also point out that there is a direct correlation between lower serum testosterone levels in men and inflammation severity by cytokines and poor clinical outcomes. The decline in total and free testosterone in aging men leads to serious pulmonary complications and the need to treat the patient in the ICU. The Covid-19 coronavirus utilizes Angiotensin-Converting Enzyme II (ACE2) for entry into the host cell. A male requires testosterone for ACE2 expression. Lower testosterone causes higher mortality in men. In contrast, if testosterone in a male is too high, blood clots can form in the circulatory system, which often lead to complications and deaths in patients with Covid-19.

Vitamin D levels and course of Covid-19

There are three major effects that vitamin D has.

  1. A strengthening of the epithelial barrier not allowing the coronavirus to penetrate into the lung tissue as easily.
  2. Release of defensins and cathelicidin, two crucial antiviral polypeptides, that eradicate the SARS-CoV-2 virus in the system.
  3. Interruption of the “cytokine storm”, an overwhelming inflammation which is responsible for viral pneumonia to develop. Without the cytokine storm there is no damage to the lungs, and people do not need treatment in the ICU. This is particularly important for people above the age of 60 and for people with pre-existing diseases.

Similarly, with the stabilizing effect of vitamin D regarding the immune function more severe forms of Covid-19 can turn into less severe forms with a better outcome.

Discussion

Research showed that in women estrogen has a modifying effect on the course of Covid-19. In males it is testosterone that leads to an improved course of Covid-19. Both sexes require adequate doses of vitamin D, which helps to strengthen the epithelial barrier. In addition, enough vitamin D releases defensins and cathelicidin, two crucial antiviral polypeptides that eradicate any virus in the system. Vitamin D also interrupts the “cytokine storm”, an overwhelming inflammation, which is responsible for viral pneumonia to develop. All of these factors together modify the course of Covid-19 and improve the probability of survival from this otherwise serious viral illness.

Hormones Play an Important Role in Survival from Covid-19

Hormones Play an Important Role in Survival from Covid-19

Conclusion

Two lines of research showed that both women and men do better with Covid-19 when their hormone levels are either adequate or are substituted to normal levels. Women in menopause taking estradiol for postmenopausal symptoms had 50% less mortality from Covid-19. Men who were testosterone deficient and were put on testosterone supplementation do better with respect to Covid-19. In aging men total and free testosterone decline and serious pulmonary complications occur with a need to treat the patient in the ICU. On top of hormones both men and women benefit from high doses of vitamin D, which strengthens the epithelial barrier. Vitamin D also releases defensins and cathelicidin, two crucial antiviral polypeptides that fights the SARS-CoV-2 virus directly. In addition, vitamin D interrupts the “cytokine storm”, an overwhelming inflammation which causes the viral pneumonia. Taken together the hormones and vitamin D can improve the outcome of Covid-19 significantly.

This text includes part of this blog.

Nov
21
2020

Antibody Treatment for Rheumatoid Arthritis Was Superior

Researchers found that antibody treatment for rheumatoid arthritis was superior to conventional therapy. In particular, rheumatoid arthritis is an autoimmune disease where autoantibodies attack the synovial lining of joints. In this case, subsequently macrophages are activated, which attack joint surfaces. As an illustration, this process leads to crippling joint deformities.

The original study was published in June, 2019, but this is difficult to understand. The magazine Sciworthy published a review article on August 24, 2020 with more understandable language.

To emphasize, in mouse experiments the researchers found that only a small subfraction of activated macrophages caused symptoms of rheumatoid arthritis. They were folate receptor beta (FR-β) positive macrophages. It is important to realize that the researchers found them both in mice with rheumatoid arthritis and in man. The evidence in humans were the same findings in human tissue samples of people with autoimmune diseases.

Details of mouse experiments

Folate receptor beta (FR-β) positive macrophages are key in mouse model of RA

Explicitly, the researchers started experiments with a mouse model of rheumatoid arthritis, because it is easier to do than human research. They found that the key to developing rheumatoid arthritis was the presence of folate receptor beta (FR-β) positive macrophages. Chiefly, macrophages remove cell debris, bacteria or viruses from the blood. However, once they are activated and they carry FR-β receptors on their surface, they destroy joints. Certainly, in the mouse model monoclonal F3 antibodies were developed that kill activated macrophages. On the contrary, the human equivalent for the F3 antibodies is monoclonal antibodies with the name m909. They are directed at the FR-β receptors on the surface of activated macrophages. But first to the mouse experiments.

Inflammation from intraperitoneal injection of thioglycollate

In the first place, the researchers created an inflammatory condition by injecting thioglycollate into their peritoneal cavity. They could demonstrate that inflammation did occur. With this in mind they found macrophages in the peritoneal fluid. There were a lot of activated macrophages in it. Histological slides were analyzed with the help of F3 antibodies. In this case they visualized the activated macrophages. Subsequently the researchers treated mice with varying concentrations of monoclonal F3 antibodies. They found that the higher concentrations cured intraabdominal inflammation of the mice.

Researchers used monoclonal F3 antibodies to treat mouse model of RA

The researchers treated collagen-induced arthritis next in a number of experiments. Several concentrations of monoclonal F3 antibodies were given to these mice. Other experiments showed that monoclonal F3 antibodies specifically attacked only the activated macrophages and killed them. The killing of the activated macrophages in the mouse model of rheumatoid arthritis cured the arthritis. Fig. 5 shows this.

Mice treated with maximum concentrations of monoclonal F3 antibodies showed decrease in bone density

Next the researchers treated rheumatoid arthritis mice with maximum concentrations of monoclonal F3 antibodies to treat the arthritis. The swelling of their paws went down completely. CT scans of the bone in the paws showed decrease in bone density, while untreated controls showed significant loss of bone density. Monoclonal F3 antibodies were indeed a cure for RA in mice (Fig. 6).

Human experiments

Researchers confined human experiments to tissue samples from patients with various autoimmune diseases. Skin biopsies from patients with psoriasis, scleroderma, and sarcoidosis showed the distribution of FR-β-positive macrophages by special staining. This staining technique used human monoclonal antibodies (m909) against human FR-β receptors on activated macrophages. The publication depicts images that show abundant activity in all three autoimmune diseases (Fig. 1).

Researchers examined tissue samples from other autoimmune diseases with monoclonal antibodies (m909) against human FR-β receptors. The activated macrophages including rheumatoid arthritis, Crohn’s disease, ulcerative colitis and idiopathic pulmonary fibrosis lit up on fluorescence microscopy. In addition, nonspecific interstitial pneumonia, chronic obstructive pulmonary disease, systemic lupus erythematosus, psoriasis, and scleroderma tested positive as well.

Future therapy possibilities of rheumatoid arthritis with monoclonal antibodies

A series of experiments showed that two mechanisms can eliminate FR-β-positive macrophages: complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity. It means that there is a strong possibility that autoimmune diseases may be treatable with monoclonal antibodies. Fig. 2 summarizes these experiments.

Conventional therapy for rheumatoid arthritis

To explain, the conventional treatment approach of rheumatoid arthritis is to induce a disease remission with drugs. To this effect doctors use anti-inflammatory drugs like ANSAIDs, disease modifying anti-rheumatic drugs (DMARDs). For example, drugs like methotrexate and sulfasalazine belong into this category. Unfortunately, the conventional drugs have many serious side effects that often make the rheumatoid arthritis patient’s condition worse.

In contrast, the integrative medicine approach to rheumatoid arthritis is to use dietary measures to reduce the inflammation. The fasting mimicking diet is able to reduce the severity of the inflammation in RA patients.

Other authors described the use of the Mediterranean diet to reduce inflammation. In addition, there are a number of regenerative methods that help improve the condition of RA patients. Research described here proved that antibody treatment for rheumatoid arthritis was superior to conventional therapy in a mouse model.

Discussion

Monoclonal antibodies (m909) against human FR-β receptors targeting activated macrophages opened up a new therapy method against rheumatoid arthritis. The equivalent F3 antibodies in mice were a useful tool to expedite research in this field. The publication that I reviewed here was able to combine mouse experiments and work on human tissue samples essentially showing the same results . Monoclonal antibodies (m909) against human FR-β receptors work potentially like a broad-spectrum anti-inflammatory drug. The monoclonal antibodies reduce the accumulation of inflammatory immune cells, which treats the cause of rheumatoid arthritis. This will likely be the future cure of rheumatoid arthritis and other autoimmune diseases. We urgently need clinical trials to prove in humans that the findings from a mouse model and human tissue samples are correct.

Antibody Treatment for Rheumatoid Arthritis Was Superior

Antibody Treatment for Rheumatoid Arthritis Was Superior

Conclusion

Researchers recently showed in a mouse model that a small portion of activated macrophages cause rheumatoid arthritis (RA). But they also examined many biopsies from patients with autoimmune diseases. The findings in human tissue samples were identical to the findings in a mouse model. Activated macrophages are sensitised to attack the linings of joints as is the case with rheumatoid arthritis. These macrophages develop special receptors, called folate receptor beta (FR-β), and the macrophages release cytokinins. The cytokinins (TNFα, IL-1, IL-6, IL-12 and others) cause inflammation and make the RA worse. They also recruit more neutral macrophages and convert them into activated macrophages. The research group found that monoclonal antibodies against human or mouse FR-β receptors killed the activated macrophages. This alleviated the arthritic symptoms and after enough antibody treatments cured the RA. There were no negative effects on the rest of the immune system.

Physicians will cure human autoimmune diseases with monoclonal antibodies in the future

Researchers demonstrated this mostly in a mouse model. But the authors have manufactured human monoclonal antibodies against the FR-β receptors of activated macrophages. This has set the stage for curing human autoimmune diseases with monoclonal antibodies as well. At this point there is a need for clinical trials with various autoimmune diseases including rheumatoid arthritis with monoclonal antibodies against activated macrophages.

Oct
31
2020

Blood Type Has Some Bearing on the Severity of Covid-19 Coronavirus

Two independent research publications concluded that blood type has some bearing on the severity of Covid-19 coronavirus infections. One was published in Denmark, the other one in Canada.

In the US the 4 common blood types occur with this frequency: group O: 45% (O positive 38%, O negative 7%); group A:  40% (A positive 34%, A negative 6%); group B: 11% (B positive 9%, B negative 2%) and group: AB 4% (AB positive 3%, AB negative 1%). Positive and negative stands for the Rh group (the rhesus factor, which is another type of blood group).

Two separate publications

Denmark study

Briefly, the Denmark study showed that when positive and negative tests for the SARS-CoV-2 virus were checked in relationship to blood groups, blood group O had 13% less coronavirus infections, group A had 9% more infections, group B had 6% more infections and group AB had 15% more infections than negative controls. This means that blood group O is relatively protected from the SARS-CoV-2 virus. The investigators were fast to add that this does not give people with a group O blood type a licence to go to the pub and celebrate.

Canadian study

The Canadian study looked at 125 critically ill people with positive SARS-CoV-2 virus tests. Of these 95 had ABO blood types available. All these patients were admitted to the ICU. Here are the significant findings: 32% of blood group A required intubation versus 84% of AB patients, 35% of O group patients and 61% of B patients required intubation. 12% of A patients and 32% of AB patients, but only 5% of blood group O patients and 9% of B patients required kidney support (continuous renal replacement therapy). In addition, group O and group B patients required a median ICU stay of only 9 days. In contrast, group A and AB had to stay in the ICU for 13.5 days.

Gene study to determine susceptibility for severe Covid-19 disease

In a European genetic study from Italy and Spain 835 patients and 1255 control participants had genetic studies done. It turned out that the genetic loci that determined the severity of Covid-19 followed the blood groups. Blood group A patients had a 45% higher risk of developing severe Covid-19 disease, while group O patients had a 35% lesser risk compared to other blood groups of developing severe Covid-19.

Discussion

Dr. Mypinder Sekhon, an intensive care physician at Vancouver General Hospital stated that people with a blood group O make less of a key clotting factor, which makes them less prone to clotting problems in the blood. Clotting is a major driver in complications of Covid-19. Other possible explanations are the blood group antigens and how they interact with antibodies from the infection with Covid-19 coronavirus. Finally, it could be related to the genes of the blood groups and how they interact with receptors of the immune system. It is interesting to also note that there are genetically different risks that go along the line of the blood groups with group A having much higher risk than group O to develop severe Covid-19 disease.

Blood Type Has Some Bearing on the Severity of Covid-19 Coronavirus

Blood Type Has Some Bearing on the Severity of Covid-19 Coronavirus

Conclusion

Both research in Denmark and in Canada confirmed that blood group O had less coronavirus infections. In the Denmark study there were 13% less severe Covid-19 cases in people with the blood group O than in negative controls. In the Canadian study of 95 patients with severe Covid-19 physicians had to admit them into the ICU. They noted that 84% of blood group AB patients in the ICU required intubation. In contrast, only 35% of O group patients required intubation. With regard to kidney support, 32% of AB patients, but only 5% of O patients required this during their ICU stay.

More research required to understand these findings

The researchers added that it is not clear why there are such differences among patients with different blood groups. They mentioned that more research is necessary. This will reveal why group O has a milder course. It will also show why group O patients require less intubation and shorter ICU stays. Separate genetic studies showed that severe Covid-19 disease develops with blood group A patients (45% higher risk). In contrast group O blood group patients have milder Covid-19 disease (35% less risk). It is with these investigations that we can now understand some of the peculiarities regarding the Covid-19 disease.  It explains why some people develop severe Covid-19 disease while others develop only mild symptoms.

Incoming search terms:

Sep
05
2020

How to Manage Clot Formation with Covid-19

A publication in the Canadian Medical Association Journal describes how to manage clot formation with Covid-19. A significant amount of cases among Covid-19 patients come down with clotting problems. This means that an infection with SARS-CoV-2 (or Covid-19 coronavirus) may initially present with a fever and cough. But a few days later it can suddenly turn into a dangerous disease with severe clots, multiple organ failures and death.

Clot occurrence with Covid-19

It is important to realize that most patients with SARS-CoV-2 do not need hospitalization. But physicians admit 10 to 15% of patients to the hospital. Of these 20% end up with treatment in the Intensive Care Unit (ICU). Of all the hospitalized patients between 5% and 30% develop some form of thrombotic event. Notably, complications of clot formation can be a stroke, a heart attack, a pulmonary embolism or a deep vein thrombosis in the leg. In a recent study from the US 400 random hospitalized patients with Covid-19 144 patients were admitted to the ICU. 4.8% had radiologically confirmed deep vein thrombosis. Overall there were 9.5% with thrombotic events that developed during the hospital stay.

How does a coagulopathy develop with Covid-19?

Truly, SARS-CoV-2 enters the body cells through an interaction of its viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. To explain, numerous organs and tissues express this receptor. This includes lung alveolar type 2 epithelial cells, endothelium, the brain, heart and kidneys. To emphasize, ACE2 leads to angiotensin II degradation. With the SARS-CoV-2 stimulation of the ACE2 receptor there may be an accumulation of angiotensin II, which causes a procoagulant state. Injury of the endothelium explains inflammation in the lining of the blood vessels in multiple organs. Commonly affected organs are lungs, heart, kidneys and intestines. The inflammatory reaction is what can lead to clot formation. When part of an organ has died off because of mini clots that destroyed part of the organ, this process can eventually lead to organ failure. Lung failure, heart failure and kidney failure can develop in these sick patients.

Adequate vitamin D blood levels are important for the immune system

By all means, vitamin D is very important for the integrity of the immune system. With vitamin D blood levels below 15 to 20 ng/mL (37.5–50 nmol/L) the immune system is paralyzed, and any viral or bacterial infection tends to overwhelm the body. Of course, this is the reason why the mortality due to Covid-19 coronavirus is highest in patients with these low vitamin D blood levels. People with secondary illnesses (diabetes, arthritis, autoimmune diseases, cancer) and patients above the age of 60 have the lowest vitamin D blood levels and have the highest mortality rates. This publication describes this in more detail.

Best vitamin D blood level is in the upper normal range (50-80 ng/mL)

Above a vitamin D blood level of 30 ng/mL (=75 nmol/L) a patient’s immune system is functioning normally. However, the immune system is strongest at a vitamin D blood level of 50–80 ng/mL (125–200 nmol/L), which is the upper range of the normal level for vitamin D in the blood.

Keep in mind that vitamin D toxicity occurs only above 150 ng/mL (375 nmol/L).

Specific effects of vitamin D on Covid-19

There are three major effects that vitamin D has.

  1. A strengthening of the epithelial barrier not allowing the coronavirus to penetrate into the lung tissue as easily.
  2. Release of defensins and cathelicidin, two crucial antiviral polypeptides that eradicate any virus in the system.
  3. Interruption of the “cytokine storm”, an overwhelming inflammation which is responsible for viral pneumonia to develop. Without the cytokine storm there is no damage to the lungs and people do not need treatment in the ICU. This is particularly important for people above the age of 60 and for people with pre-existing diseases.

In like manner, with the stabilizing effect of vitamin D regarding the immune function more severe forms of Covid-19 can turn into less severe forms with a better outcome.

Treatment of patients with Covid-19 who have clotting problems

Patients need to be assessed with respect to their risk of developing clots. This publication describes that high risk patients have elevated D-dimer levels. When blood clots dissolve the body produces D-dimer, a protein fragment. Normally the D-dimer test is negative in a person that does not produce clots. But in sick patients with Covid-19 who form clots this blood test typically shows D-dimer >2500 ng/mL. In addition the tests show high platelet counts (more than 450 × 109/L), C-reactive protein (CRP) >100 mg/L and an erythrocyte sedimentation rate (ESR) >40 mm/h.

Indeed, with this constellation of blood tests in a severe Covid-19 case in the ICU setting, the physician uses heparin intravenously or subcutaneously to counter clot formation. However, this needs to be balanced against the risk of causing severe internal bleeding.

Separate from the anticoagulant effect, heparin seems to also suppress inflammatory cytokine levels. In addition, heparin suppresses neutrophil chemotaxis and migration. Physicians rescued many patients from death using heparin therapy.

Risk versus benefit clinical trials of heparin therapy are required

At this point there are only retrospective clinical trials available to describe risk versus benefit of heparin therapy. Some show no difference, others do. There are two international clinical trials on their way to shed more light on this situation. Until the results of these clinical trials are available, physicians need to treat patients to the best of their knowledge.

How to Manage Clot Formation with Covid-19

How to Manage Clot Formation with Covid-19

Conclusion

Clot formation in sick Covid-19 patients is responsible for many deaths in Covid-19 patients. The SARS-CoV-2 (or Covid-19 coronavirus) causes a cytokine storm with injury to the lining of the arteries. This can affect multiple vital organs and the condition may lead to organ failure. This activates the clotting system and causes clots all over the body. When this process occurs, patients get very sick and the death rate climbs. Physicians were able to rescue some patients with heparin therapy. Two international clinical trials are on the way. Hopefully  these trials answer questions about this newer treatment method. The downside of heparin therapy is the complication of massive bleeding, which causes deaths as well. When it comes to Covid-19, don’t rely on curative medicine. Strengthen your immune system by preventative therapy like vitamin D3 that can interrupt the cytokine storm.

And even with a “well-prepared” immune system it is extremely important to follow all the guidelines of distancing, disinfecting and wearing face masks. We need all the help we can get!

Part of this was previously published here.

 

Aug
29
2020

Health Benefits from Vitamin C Supplements

Notably, there are health benefits from vitamin C supplements as I will explain below. A recent publication in the Journal of Intensive Care stated that vitamin C may lower ventilator time for sick patients in the ICU. In this case, researchers performed  a meta-regression analysis. It is important to realize that higher doses of vitamin C changed the need for ventilation. Vitamin C given intravenously or by mouth significantly reduced the need for ventilation in sick patients. To explain, the researchers pooled eight clinical trials and compared them to a control group who did not receive vitamin C treatment. In detail, the researchers noted that there was a 14% reduction with regard to ventilator use in the treatment group. To clarify, they had received vitamin C infusions while patients who did not receive vitamin C infusions served as controls.

Five of the clinical trials involved patients who received 10 hours or more ventilation treatment. Certainly, these patients were sicker than the average ICU patients. They experienced a 25% reduction of ventilator time after receiving between 1 and 6 grams of vitamin C. The physicians gave this intravenous or orally.

History of Mega doses of vitamin C

Indeed, in the 1940’s mega doses of vitamin C were given intravenously in an attempt to treat polio. Eventually, in the late 1960’s Linus Pauling called high doses of vitamin C the “healing factors for diseases”. But subsequent clinical investigations showed that vitamin C had limitations. The Oregon State University website reports that some of the claims about vitamin C in the past went overboard. Here are some points about vitamin C that we need to remember.

  • Vitamin C is an important cofactor in many enzymatic reactions, such as the biosynthesis of collagen, carnitine and neuropeptides. In addition, the regulation of gene expression requires vitamin C and vitamin C is an important antioxidant.
  • A prospective cohort study showed that higher vitamin C blood levels lowered the risk of high blood pressure, coronary heart disease and strokes.

More effects of vitamin C

  • Patients in need of a surgical procedure benefitted from vitamin C. Researchers showed that vitamin C was a valuable adjunct to conventional medicine in cardiovascular disease  Vitamin C reduced arrhythmia and myocardial injury following cardiac procedures.
  • There is insufficient evidence that regular vitamin C intake prevents cancer. Randomized controlled clinical trials reported no effect of vitamin C on cancer.
  • 10 grams per day of vitamin C has no association with toxic or adverse effects in most people. However, some adults are more sensitive to vitamin C and develop gastrointestinal disturbances and diarrhea with megadoses of vitamin C. For these people physicians recommend  taking up to 2 grams per day of vitamin C.

Vitamin C and disease prevention

Several clinical trials involving vitamin C supplements showed significant positive effects on patients. Below I am briefly reviewing these clinical trials.

Endothelial function

Endothelial function was improved with doses of above 500 mg of vitamin C. This likely is the reason that there is a reduction of cardiovascular disease in people who consume 1000 mg of vitamin C daily.

High blood pressure

Vitamin C at 500 mg daily lowers high blood pressure. A clinical trial found that 500 mg of vitamin C daily lowers the systolic blood pressure by 3.84 mm mercury and the diastolic blood pressure by 1.48 mm mercury. Over several years’ time this can prevent premature heart attacks and strokes.

Vitamin C and the immune system

Vitamin C is a powerful antioxidant. It can neutralize reactive oxygen species, which are produced when the immune cells fight viruses and bacteria. Neutrophils, lymphocytes and phagocytes are all supported by vitamin C. Vitamin C and E co-operate in their antioxidant functions. Vitamin C is essential for a strong antibody response with bacterial or viral infections. I take 1000 mg of vitamin C once daily.

Heart failure, strokes and heart attacks

Many studies showed some effects on reduction of heart attacks, strokes and congestive heart failure. With respect to strokes there was a 42% risk reduction over 9.5 years when the highest vitamin C plasma level was compared to the lowest level. But results regarding heart attack prevention and prevention of CHF were only marginal.

Cancer and vitamin C

Stomach cancer: there was a 45% reduction of stomach cancer when high vitamin C plasma level cases were compared to low plasma level cases.

Colon cancer: A pooled study based on 13 prospective cohort studies showed that vitamin C supplementation reduced colon cancer risk by 19%.

Large B cell lymphoma: After 11 years of follow-up the Women’s Health Initiative found that vitamin C supplementation reduced diffuse large B cell lymphoma by 31%.

Researchers could not show significant effects of vitamin C on other cancers.

Type 2 Diabetes (=adult onset diabetes)

A large European study going on for 12 years showed a strong inverse relationship between blood levels of vitamin C and the onset of diabetes. Patients with the highest vitamin C blood levels had a 62% lower risk of developing diabetes. Physicians compared this to low level vitamin C controls.

Mortality reduction with vitamin C supplementation

In the EPIC-Norfolk prospective study a clear inverse relationship was found with higher vitamin C blood levels and a reduction in risk of all-cause mortality.

Recommended dietary allowance for vitamin C

The official dietary recommendation for vitamin C in adults is 90 mg daily for males and 75 mg daily for females. However, in view of the above mentioned clinical trials I would recommend the following. Supplement with 500 mg to 1000 mg of vitamin C daily to have enough vitamin C reserves. The reason I say this is that the official dietary recommendation was based on preventing scurvy, the historic insufficiency disease of vitamin C. In addition, as mentioned before, vitamin C is safe to take up to 10 grams per day. Many physicians recommend taking a smaller amount of vitamin C found to prevent strokes, high blood pressure, type 2 diabetes, improve endothelial function and strengthen the immune system.

Health Benefits from Vitamin C Supplements

Health Benefits from Vitamin C Supplements

Conclusion

In my review I discussed health benefits from vitamin C supplements. Briefly, doctors noted that severely sick patients on respirators in the ICU setting were able to reduce the ventilator use.  This was significant after they received between 1 and 6 grams of intravenous or oral vitamin C. However, patients with the highest vitamin C supplementation had a 62% lower risk of developing diabetes than low level vitamin C controls. Vitamin C lowered high blood pressure moderately and prevented strokes by 42%. Vitamin C stimulates the immune system together with vitamin D, A, E and some trace minerals. There are many more health benefits from vitamin C supplements. The official dietary recommendation for vitamin C in adults is 90 mg daily for males and 75 mg daily for females. However, I take 1000 mg of vitamin C daily as the evidence shows that this is healthier.