• Electronics In The Bedroom

    Electronics In The Bedroom

    There is new research showing that electronics in the bedroom can interfere with a normal sleep pattern. Dr. Ben Carter is the lead author and a senior lecturer in biostatistics at King's College London. He just completed a study involving 125,198 children with an average age of 14½ years. There … [Read More...]

  • Chronic Shoulder Pain Treatment

    Chronic Shoulder Pain Treatment

    This overview is about chronic shoulder pain treatment. A 71- year old health conscious patient was exercising in a gym. When he used the shoulder machine, he suddenly experienced a stinging pain in his left shoulder. The pain seemed to be localized in the upper (superior) portion of the trapezius … [Read More...]

  • New Breast Cancer Cure?

    New Breast Cancer Cure?

    According to the popular press there is a new breast cancer cure. But we have to be careful with general statements like this. First of all, only 20% of breast cancers are HER2 positive. When the surgeon biopsies breast cancer, the sample is sent to the pathologist. Out of 100 samples, 20 come back … [Read More...]

  • Stress Drives Our Lives

    Stress Drives Our Lives

    Every year the American Psychological Association (APA) monitors the American public how stress drives our lives. This yearly report has been compiled since 2007. About 75% of the people questioned reported that they have experienced moderate to high stress over the past month. Symptoms when stress … [Read More...]

  • Health Risks Of Night Shifts

    Health Risks Of Night Shifts

    One of the news stories in 2016 was about health risks of night shifts. The Bureau of Labor Statistics reported in 2000 that 15 million workers (16.8 % of the working population) were doing alternative shifts (night shift work mixed with daytime shifts). In 2016 they reported 14.8% were working … [Read More...]

Dec
03
2016

Electronics In The Bedroom

There is new research showing that electronics in the bedroom can interfere with a normal sleep pattern. Dr. Ben Carter is the lead author and a senior lecturer in biostatistics at King’s College London. He just completed a study involving 125,198 children with an average age of 14½ years. There were about equal amounts of males and females. Both sexes had the same problem. When they were allowed to use electronic media, this interfered with their sleep time. What electronic devices are we talking about? Watching TV, using the computer, the cell phone, tablets and computer games. The study was originally published at JAMA Pediatrics.

Result of the study on electronics in the bedroom

  1. When media bedtime use was allowed, there was a 2.17-fold higher risk of not getting enough sleep quantity. This was compared to kids who did not use media devices in the bedroom.
  2. There was a 1.46-fold risk of having poor sleep quality.
  3. There was a 2.72-fold risk of excessive daytime sleepiness.
  4. Even children who had access to media use, but did not use it at night had similar findings. They had a risk of 1.79-fold to get inadequate sleep quantity. There was a 1.53-fold risk of poor sleep quality. And excessive daytime sleepiness was present with a 2.27-fold risk.

Melatonin level influenced by electronics in the bedroom

The diurnal hormone rhythm has been well researched regarding our sleep pattern. Essentially two hormones work together.

In the morning when you open your eyes, light enters our eyes and is registered in the hypothalamus. There are also links from the hypothalamus to the pineal gland, where melatonin is synthesized and stored. The light signal stops the secretion of melatonin from the pineal gland, although it is still being produced during the day in the pineal gland, but stored there until the evening hours set in. You may have noticed that you start yawning when the light dims in the evening. That’s when melatonin is released into your system to let you know it’s time to slow down and go to sleep.

Of course, we have electrical light and can turn night into day if we choose to! This works for a limited time, but eventually tiredness sets in, and melatonin wins the upper hand. Melatonin is the master hormone of the circadian rhythm.

It is interesting to note that cortisol does exactly the opposite. Cortisol is the adrenal gland hormone that helps us cope with stress. When we are fully awake, we need cortisol to cope with the various stress situations of the day. Melatonin inhibits cortisol secretion and cortisol inhibits melatonin secretion, and they are natural opponents working together for your common good. This is part of the circadian rhythm. We can measure these hormones, and this is how researchers have found out how these two hormones work together.

When children or adults expose themselves too much to electronic devices, the brain gets stimulated and sends signals to the adrenal glands to produce more cortisol. In between the hypothalamus and the adrenal glands there is a cascade of hormones that are involved in this.The hypothalamus sends CRH, the corticotropin-releasing hormone to the pituitary, which stimulates in turn the release of the messenger hormone ACTH to produce more cortisol in the adrenal glands. It is the extra cortisol that keeps kids awake. The same applies to adults who invite electronics into their bedroom. All the excitement from watching the various media gadgets leads to extra cortisol. And we just learnt that cortisol counteracts melatonin. 

What can parents do about electronics in the bedroom?

First of all, parents need to be firm with their kids. They need to explain to them that electronics need to be kept out of the bedroom. There needs to be a cooling down period one hour before bedtime where they do not watch TV, use the cell phone or other electronic gadgets. They may rebel against this first, but when they sleep better, they likely will be more agreeable. Here is a list that contributes to better sleep habits and better sleep quality:

  • Ensure that the bedroom is dark, soundproof, and comfortable with the room temperature being not too warm. It is important to develop a “sleep hygiene”. This means going to sleep around the same time each night, to have some down time of 1 hour or so before going to bed and get up after the average time of sleep (for most people between 7 to 9 hours). Sleeping in is not a solution, and an alarm clock will help also to develop a sleep routine.
  • Caffeine drinks, alcohol, nicotine and recreational drugs must be avoided. Smokers should butt out no later 7PM, as nicotine is a stimulant.
  • Getting into a regular exercise program, either at home or at a gym is beneficial.
  • Avoid a heavy meal late at night. A light snack including some warm milk would be OK.
  • It is not a sensible idea to use the bedroom as an office, reading place or media center. It paves the way to the stimulus of the cortisol effect that keeps us awake. The bedroom is a place of rest and should be comfortable and relaxing.
  • Some sleepers wake up at night, and they are wide-awake! Leaving the bedroom and relaxing in the living room for a while can help. It goes without saying that playing video games will not help! An alternative is to take 3 mg of melatonin, which will helps to fall asleep faster, but melatonin will wear off after about 4 hours.
  • A self-hypnosis recording is a useful adjunct to a sleep routine. Listening to it before going to sleep helps to focus on relaxation and to stop ruminating about the day and its events. Keep the volume low.

Some thoughts about sleep aids after electronics in the bedroom are removed

Sometimes an adolescent will have trouble falling asleep. Here is the solution of what to do: at the time the youngster is having problems sleeping, there is too much cortisol on board, which prevents the melatonin from being released from the pineal gland. What is missing is melatonin.

The first step is to take 3mg of melatonin at bedtime. It takes 20 to 30 minutes for melatonin to take effect. If the youth does not fall asleep within that time frame he or she is likely thinking too much. If that were the case, I would recommend taking 1 or 2 capsules of valerian root (500 mg strength) from the health food store. This combined with the melatonin should help in more than 80%-90% of insomnia cases. If the child still cannot sleep, see your physician. The adolescent may need sleep studies done or may have problems with the thyroid (hypo- or hyperthyroidism), which may need to be checked. Other medical problems, including depression, have to be checked out as well. Melatonin and valerian are safe. Other sleeping pills have multiple side effects including memory problems.

Electronics In The Bedroom

Electronics In The Bedroom

Conclusion

A new study has shown that electronics in the bedroom will often keep children awake. It has become a huge problem in schools where students fall asleep or have problems paying attention. There are simple rules regarding a quiet bedroom without electronics that will go a long way of rehabilitating a child who has sleeping problems because of electronics. There are natural ways to help nature along, if the simple measures don’t work. Melatonin and valerian root help to calm the mind and help catching some healthy sleep. If the problem were persisting, an appointment with the family physician would be in order.

Even though this article deals with children and adolescents and the use of electronics in the bedroom, the same applies to adults. They are not immune to the stressors that disrupt sleep. They are just as likely to feel tired and sluggish after a restless sleep, and their performance at the workplace will suffer. Sleep hygiene is as important for adults as it is for adolescents.

Nov
26
2016

Chronic Shoulder Pain Treatment

This overview is about chronic shoulder pain treatment. A 71- year old health conscious patient was exercising in a gym. When he used the shoulder machine, he suddenly experienced a stinging pain in his left shoulder. The pain seemed to be localized in the upper (superior) portion of the trapezius muscle. With this he also felt pain in his left neck.

This was fitness gone wrong! It can happen, that exercise is overdone or lack of judgment leads to injury. Trainers caution us, when we embark on exercise programs, and yet, it happens! Often the road to recovery is a bumpy stretch, and if the problem is not corrected, it can lead to chronic pain. With this knowledge the patient sought help. The first approach was visiting a

Chiropractor

He sought the help of a chiropractor and had 6 manipulations in the neck and thoracic spine. The spine had good range of motion, but the left shoulder pain in the trapezius muscle stayed.

He found that heat application to the trapezius muscle helped, so he bought an electric heating pad that he applied once or twice a day for pain relief. He also sought the input of his G.P. He was offered

Pain pills

This was the predictable regimen, but the patient was concerned about the side effects of pain pills, and he declined. He had heard of a supplement, called Trilipotropic (from Trophic), which contains 300 mg of choline bitartrate, 300mg of inositol and 300 mg of methionine in one tablet. He learnt at a medical conference that two of these tablets were as effective in relieving the pain as one tablet of Motrin, an anti-inflammatory drug. He took two of these pain relievers from the health food store a couple of times per day alternating with the heating pad to control his pain.

Since the condition improved only marginally, he looked at the option of

Prolotherapy

When the chiropractor mentioned after 5 treatments that he could not treat the pain successfully, the patient decided to try prolotherapy, because he had heard that this would be good for chronic musculoskeletal pain. The naturopath whom he saw examined thoroughly and determined that the patient would be a good candidate for 2 to 4 prolotherapy treatments. After one treatment on the left side along the cervical spine and the left trapezius area the pain was reduced by 30% of what it was before. The second prolotherapy treatment was given again to the left side and also to the right side to keep it symmetrical. The naturopathic physician told the patient that he would see him for follow-up in 4 weeks. The treatment of the right asymptomatic side did not cause any pain, but the left side started flaring up after the second treatment, causing pain that was almost as bad as the original pain. When the patient returned to the naturopath and told him about the flare-up of pain in his left shoulder, he was told that this is what sometimes happens when treatments are not spaced far enough apart. He felt that this should be observed now and reassessed in 6 months in case there was

No progress. It was time to look at other options:

IMS treatments

When the chiropractor had admitted that he could not help removing the pain, he suggested that maybe a physiotherapist trained in intramuscular stimulation treatment (IMS), also known as dry needling could be of help. The patient was waiting for the appointment with the naturopath for prolotherapy when he saw the physiotherapist for IMS treatments. He examined the patient and noticed a persistent trigger point in the upper trapezius muscle, which he thought was causing the chronic pain.

Two IMS treatments relieved the pain by about 50%. But about two or three days later the pain came back to about 75% of the original pain after the gym injury. The appointment for the prolotherapy by the naturopath had taken two months to wait for, so he had already had 3 IMS treatments just before the prolotherapy to get some pain relief. The IMS trained physiotherapist thought that perhaps a few more treatments, up to five or six might be able to take the pain away. So the patient continued treatments on a weekly basis.

Unfortunately the hope for pain relief did not materialize. The pain improved to about 30 to 40% of the original pain, but it always came back just 2 or 3 days later. Fortunately for him he could apply the heating pad and the pain would stay away for 3 to 5 hours. It also responded to taking two tablets of the choline bitartrate/inositol/methionine combination that took the residual pain away for several hours. Self-massaging the trigger point also gave some relief. But occasionally the pain came back with a vengeance and felt like a charley horse that suddenly could occur in his left shoulder making it difficult to move his left arm, particularly when he needed an outstretched arm for ballroom dancing, lifting of heavy objects or for working out in the gym. Even just holding on to the rails of the treadmill when doing a fast walk on the treadmill for half an hour could lead to a flare up of the left shoulder pain. It is frustrating, when there is only temporary relief, but no real cure, but giving up is no option. Often we find more information on the Internet. What came up was

Low-dose laser therapy

The patient remembered having heard of low-dose laser therapy that might be useful in treating chronic pain. This method, called interstitial low-laser therapy was used to treat his trigger point in his left shoulder. A physician who is the president of ISLA –the international society for laser applications- specializing in laser treatment treated him by inserting a cannula into his left trapezius muscle close to the trigger point. He injected a small amount of procaine (local anesthetic), then 5 ml of normal saline. This was followed by three low-laser beam treatments for 10 minutes each, first blue, then green and finally yellow color, all given interstitially after which the cannula was removed.

He was surprised to feel relief almost instantly. There was still a bit of pain from the interstitial needle for about two days, but he noticed that the trigger point in the trapezius muscle had completely vanished. Finally after 6 months of intermittent pain there was relief of about 50% of the original pain. This time the pain in that particular trigger point stayed away, which was encouraging.

But there were two other trigger points that were bothering him. After one month he got a second interstitial low dose laser treatment by the naturopath who had previously given him the prolotherapy into another trigger point, and finally 2 weeks after this, the third laser treatment was given for yet another trigger point. This continued on for another few months. The pain disappeared, then it crept in slowly again, but at a lower level. It became a quest to eradicate the trigger points! Each time the latest trigger point that was still palpable was treated with the same low-dose laser treatment method. It took a total of 9 interstitial treatments to finally reach the point where all of the pain was gone.

It felt strange: the chronic left shoulder pain had disappeared!

Chronic Shoulder Pain Treatment

Chronic Shoulder Pain Treatment

Conclusion

When pain lasts for more than 3 months, it is referred to as “chronic pain” and is often termed neuropathic pain that is difficult to treat. You may have guessed by now that I was the patient in this blog, and so I had a vested interest in getting rid of this pain. I had previously described a similar pain in my lower back that was relieved with just one interstitial low-dose laser treatment at that time and my back has remained pain free since. Shortly after that successful treatment I developed the left shoulder pain from a soft tissue injury in the gym as mentioned. I was fortunate that Dr. Weber could treat me again, this time at his clinic in Lauenförde, Germany on occasion of a Germany trip that I had booked for holiday purposes.

I was lucky that this treatment responded similar to the one in my lower back. The difference was that my left shoulder required a total of nine low-dose laser treatments to be resolved and my pain had lasted a total of 14 months!

It occurred to me that a successful outcome of treating pain requires collaboration between patient and therapist. Call it trial and error. In my case it was only the fourth treatment modality, the low-dose laser therapy that worked permanently.

I feel that the chiropractor did his best to ensure there was no nerve root irritation and told me when he had reached his limits.

The IMS trained physiotherapist treated me before and after the prolotherapy and also told me after a total of 12 visits that he likely could not help me any more than he did.

The naturopath who did the prolotherapy said that he had strengthened the ligaments along the spine on the left side, but that the trigger point from the gym injury likely was not responding to prolotherapy.

The final answer came from the treatment by Dr. Weber in Germany and the naturopath in Kelowna using the same Weber system machine with low-dose lasers. I think that this is an under-recognized treatment modality of musculoskeletal injuries, including sports injuries. You can find treatment providers for low-dose laser therapy throughout the US, Canada and Europe where many physicians and naturopathic physicians use it as part of their pain management methods. The equipment has been FDA approved; Health Canada approved and is approved by the Medical Devices Directive in Europe. Please note that this type of laser (low-dose laser) has nothing to do with laser treatment for cosmetic purposes.

It has to be stressed that chronic pain treatment requires attention to detail, feedback from the patient to the healthcare provider and persistence on behalf of the patient to follow through until the chronic pain is resolved. It also shows that giving up is not an option!

Nov
19
2016

New Breast Cancer Cure?

According to the popular press there is a new breast cancer cure. But we have to be careful with general statements like this. First of all, only 20% of breast cancers are HER2 positive. When the surgeon biopsies breast cancer, the sample is sent to the pathologist. Out of 100 samples, 20 come back with the finding that it is HER2 positive breast cancer.

Herceptin ® (trastuzumab), the first step of breast cancer cure

Trastuzumab is a monoclonal antibody that interferes with the HER2 receptor. Its main use is to treat HER2 positive breast cancers. But trastuzumab (brand name Herceptin ®) has serious side effects. In early HER2 positive breast cancer it can cause heart failure in 5.7–35.4% of patients, while it can cure breast cancer with a 35% cure rate of Her2-positive patients. It is significant to note that many of the studies used trastuzumab in combination with the chemotherapeutic agent anthracycline concomitantly. Anthracycline by itself has some cardio-toxic effect. Most of the studies that investigated heart toxicity of trastuzumab used this monoclonal antibody for 52 weeks. Newer studies show that as little as 9 weeks can be as effective in tumor cures, which reduces the risk of toxic effects on the heart to 2.2–2.3%.

Here is a link that shows visually what the effect of Herceptin ® may be on the HER2 surface marker in a woman with this type of breast cancer.

Lapatinib (Tykerb ® or Tyverb ®), the second step of breast cancer cure

Absorption of aging cancer cells, called apoptosis, is inhibited by overexpression of oncogenic receptor tyrosine kinases. These are proteins that normally function to remove dying cells at the end of their life span. In HER2 breast cancer these kinases are particularly common and are responsible for the cancer cell survival. Lapatinib is a dual tyrosine kinase inhibitor, which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways. Expressed in simpler terms, it removes dying cancer cells, so they cannot get reactivated or continue to survive.

A phase 3 clinical trial was done with Lapatinib and a chemotherapeutic agent, capecitabine (brand name Xeloda ®).  When the two drugs were combined there was a 51% reduction in the risk of the disease progression.

Herceptin ® and Lapatinib combined as new breast cancer cure

At the 10th European Breast Cancer Conference in Amsterdam professor Nigel Bundred reported about a trial involving 257 women with newly diagnosed, operable, HER2 positive disease. They were recruited between November 2010 and September 2015. Their biopsies were taken and the surgery was scheduled for 2 weeks later.

The trial was in two parts: The first 130 women were treated with trastuzumab (Herceptin ®) only, or lapatinib (Tyverb ®) only, for 11 days after diagnosis and before surgery. From other trials evidence became known that the combination of trastuzumab and lapatinib had better survival rates. The investigators decided to include a second part into their trial starting August 2013 with 127 women. Part of this trial was a combination treatment of trastuzumab and lapatinib.

Samples of tissue were taken from the original breast biopsies and then again two weeks later from the material of the breast surgery.

The pathologist examined the breast cells for a drop in the Ki67 protein, an indicator of cell proliferation. They also looked for an increase of apoptosis of 30% or more from the first date of the first biopsy. A “pathological complete response” was the term they used for a cure. When there was a partial cure, this was termed “minimal residual disease“. This meant that the tumor was less than 5 mm in diameter at the time of surgery. Women who had received the combination treatment had 11% pathological complete response (11% cure rate). 17% of the combination therapy group had minimal residual disease. There was no cure for those randomized to only trastuzumab and only 3% of that group had minimal residual disease.

New Breast Cancer Cure?

New Breast Cancer Cure?

Conclusion

Essentially this new research shows that two inhibitor drugs together are better than one or one in combination with conventional chemotherapy.

But we have to keep in mind that HER2 breast cancer includes only 20% of all types of breast cancer. When you hear that 11% of HER2 breast cancer was cured with the combination therapy in 11 days, it translates into only 2.2% of all types of breast cancer cured and only 3.4% of all breast cancer cases had minimal residual disease (tumor size less than 5 mm in diameter). This could be easily removed by surgery.

What everybody is excited about are the cures of 2.2% of all types of breast cancer (or 11% of HER2 breast cancer). This is a good start. But much more research needs to be done to increase this number of cures. While we are seeing some progress for one group of breast cancer patients, it is not nearly sufficient to advertise this treatment as a “cure”.

For all breast cancers a more promising option is available. A study from Wayne State University, Detroit, Michigan has shown that cryoablation therapy for breast cancer without excision can give a much higher cure rate of 100% over a period of 1 ½ years. In this procedure the tumor is left in place, but killed by cryotherapy (extreme local cold temperatures). It gives a cosmetically superior result. This is an accepted alternative, but is not yet widely practiced.

Nov
12
2016

Stress Drives Our Lives

Every year the American Psychological Association (APA) monitors the American public how stress drives our lives. This yearly report has been compiled since 2007. About 75% of the people questioned reported that they have experienced moderate to high stress over the past month.

Symptoms when stress drives our lives

What kind of symptoms can stress cause? It can cause sleep deprivation, anxiety, headaches and depression. But there can be more symptoms from any disease that stress may cause. The “Stress in America” report from February 2016 shows on page 5 that unhealthy life habits are used by low-income Americans to cope with stress. A bar graph shows that watching television or movies for more than 2 hours per day is common. Another way of coping is to surf the Internet more often, take more naps or sleep longer. Eating more, drinking alcoholic beverages and smoking more are other unhealthy ways to cope with stress.

As the stressed person gains extra weight and eventually becomes obese, there is a higher rate of diabetes that can develop with all of its complications.

Causes of stress in our lives

The “Stress in America” survey was based on 3,068 adults in the US who completed the survey during August 2015. 72% were stressed out about financial issues. 22% of these said that they were extremely stressed in the past month as a result of money concerns. Other common concerns were work, the economy, family responsibilities and concerns about personal health. Average stress levels among Americans decreased when compared to 2007. On a 10-point stress score respondents rated their stress at 4.9 in 2016 compared to 6.2 in 2007. But according to the American Psychological Association this is much higher than a stress rating of 3.7 considered to be a healthy level.

Stress affects people from all walks of life, workers, women, young adults, students and those with lower incomes.

“Stress is caused by the loss or threat of loss of the personal, social and material resources that are primary to us” Stevan Hobfoll, PhD, a clinical psychologist from Rush University Medical Center said. “So, threat to self, threat to self-esteem, threat to income, threat to employment and threat to our family or our health…” is what causes stress.

Stress drives our lives causing disease

When stress is too much for our system, we are starting to see pathology develop. “Stress is seldom the root cause of disease, but rather interacts with our genetics and our state of our bodies in ways that accelerate disease” professor Hobfoll says. The following are common diseases that can result from chronic stress.

Heart attacks and strokes

In a 2015 Lancet study 603,838 men and women who worked long hours were followed for a mean of about 8 years with respect to heart disease or strokes. All of the subjects were free of heart attacks and strokes when they entered into the study. There were a total of 13% more heart attacks in those who worked extra hours compared to those who worked 40 hours per week or less. With respect to strokes there were 33% more strokes in those who worked long hours. A dose-response association was calculated for strokes in groups with various workloads. Compared to standard working hours there were 10% additional strokes for 41-48 working hours, 27% for 49-54 working hours and 33% for 55 or more working hours per week.

Stress drives our lives and causes substance abuse

In order to cope with stress many of us treat daily stress with alcohol. It makes you feel good subjectively, but it can raise your blood pressure causing heart attacks and strokes down the road. A low dose of alcohol may be healthy, but medium and high doses are detrimental to your health.

Next many people still smoke, which has been proven long time ago to be bad for your health. It can cause heart attacks, various cancers and circulatory problems leading to leg amputations.

Overeating is another common problem. As comfort food relieves stress, extra pounds are put on. As you know it is easier to put weight on than get it off. Being overweight or being obese has its own problems: arthritis in the hips and knees makes walking more difficult. The metabolic syndrome sets in, which is a characteristic metabolic change causing diabetes, high blood pressure, heart attacks, strokes and certain cancers. The more weight you carry, the less likely you are to exercise. This deteriorates your health outlook.

Diabetes

Stress causes too much cortisol secretion from the adrenal glands. This raises blood sugar, and when chronic can cause diabetes. In addition unhealthy eating habits associated with stress can cause weight gain and high blood sugars leading to diabetes.

In a 2012 California study 148 adult Korean immigrants were examined. They all had elevated blood sugars confirming the diagnosis of type 2 diabetes. Their waist/hip ratio was elevated.

A high percentage of the study subjects had risk factors for type 2 diabetes. This included being overweight or obese and having high blood glucose readings. 66% of them said that they were feeling stressed, 51% reported feeling anxious, 38% said they were feeling restless, 30% felt nervous and 3% said they were feeling hopeless.

An Australian long-term follow-up study computed risk factors for developing type 2 diabetes. Stress was a major contributor to diabetes.

Diabetes was significantly associated with a 30-day episode of any anxiety disorder with a 1.53-fold risk. A depressive disorder had a 1.37-fold risk to cause diabetes and posttraumatic stress disorder had a risk of 1.42-fold to cause diabetes.

Infertility

Stress changes hormones in women causing ovulation problems and infertility. 1 in 8 couples in America have problems getting pregnant. Stress has been identified as being at least a contributing factor. But in men stress can also reduce sperm count and semen quality as this study describes.

Alzheimer’s disease

A 2010 study from Gothenburg University, Sweden examined 1462 woman aged 38-60 and followed them for 35 years.

Psychological stress was rated in 1968,1974 and 1980. 161 females developed dementia (105 Alzheimer’s disease, 40 vascular dementia and 16 other dementias). The risk of dementia was reported higher in those women who had frequent/constant stress in the past and was more severe the more stress they were exposed to in the past. Women who were exposed to stress on one, two or three examinations were observed to have higher dementia rates later in life, when compared to women who were not exposed to any significant stress. Specifically, dementia rates were 10% higher when exposed to one stressful episode, 73% higher after two stressful episodes and 151% higher when exposed to three stressful episodes.

Remedies for stress

Before you can attempt to remedy stress, you must first detect that you are under stress. You can recognize this when you have problems sleeping, you suffer from fatigue, when overeating or undereating is a problem, and if you feel depressed. Others may feel angry or are irritable. Some bad lifestyle habits may also make you aware that you are under stress. You may smoke or drink more in an attempt to manage stress. Some people abuse drugs.

Here are some suggestions how to remedy stress:

  1. Seek support from family, friends or religious organizations. If you engage in drugs or alcohol overuse or you feel suicidal, it is best to seek the advice from a psychiatrist or psychologist.
  2. Engage in regular exercise. This produces endorphins, the natural “feel-good” brain hormone. This reduces symptoms of depression and improves sleep quality.
  3. Do something that increases pleasure, such as having a meal with friends, starting a hobby or watching a good movie.
  4. Positive self-talk: avoid negative thoughts like “I can’t do this”. Instead say to yourself “I will do the best I can”. Psychologists have developed a technique where they teach patients how to turn negatives into positives. It is called “cognitive therapy”. You may want to seek the advice of a psychologist to have a few cognitive therapy sessions.
  5. Daily relaxation: you may want to use self-hypnosis, tai-chi exercises or meditation to reduce your stress levels.
Stress Drives Our Lives

Stress Drives Our Lives

Conclusion

Stress is very common. Diverse diseases like heart attacks, strokes, diabetes and Alzheimer’s disease can all be caused by stress. It is important to minimize the impact of stress by seeking family support and support from friends. Engaging in regular exercise will release endorphins and make you feel better. Relaxation exercises and seeking counselling can all help you to manage stress. It is not a force in your life that can be ignored or simply tolerated. Stress is indeed there, but we can make a difference by managing it to avoid that stress manages us.

Nov
05
2016

Health Risks Of Night Shifts

One of the news stories in 2016 was about health risks of night shifts. The Bureau of Labor Statistics reported in 2000 that 15 million workers (16.8 % of the working population) were doing alternative shifts (night shift work mixed with daytime shifts). In 2016 they reported 14.8% were working alternate shifts. Among blacks, Asians and Latino Americans the percentage of working alternative shifts was higher, namely 20.8%, 15.7% and 16%, respectively.

Shift work is more common in certain industries, such as protective services like the police force, food services, health services and transportation.

Evidence of health risks of night shifts

There are several publications that showed evidence of health risks of night shift workers. Here is a random selection to illustrate the health risks of night shifts.

  1. A study from 2015 examined the sleep patterns of 315 shift nurses and health care workers in Iranian teaching hospitals. They found that 83.2% suffered from poor sleep and half of them had moderate to excessive sleepiness when they were awake.
  2. This South Korean study examined 244 male workers, aged 20 to 39 in a manufacturing plant. Blood tests from daytime workers were compared to night shift workers. Inflammatory markers like the C-reactive protein and leukocyte counts were obtained. Night shift workers had significantly higher values. The investigators concluded that shift workers have increased inflammatory markers. This is a sign of a higher risk of developing cardiovascular disease in the future.
  3. A Swedish study found that white-collar shift workers had a 2.6-fold higher mortality over a control group of daytime white-collar workers.
  4. Another study compared night workers in the age group of 45 to 54 with daytime workers and found a 1.47-fold higher mortality rate in the night shift workers.
  5. In a study from China 25,377 participants were included in a study that investigated cancer risk in males with more than 20 years of night shift work. They had a 2.03-fold increased risk to develop cancer compared to males working day shifts. Women with night shift work were unaffected with regard to cancer.
  6. A Polish study examined hormones and the body mass index (BMI) among 263 women who worked night shifts and 269 women who worked day shifts. When night shift workers had worked more than 15 years at nights, their estrogen levels, particularly in postmenopausal women were elevated compared to the daytime workers who served as controls. The BMI was also increased in the nighttime workers.
  7. Chronic lymphocytic leukemia (CLL): a study in Spain showed that working for more than 20 years in rotating night shifts was associated with a 1.77-fold higher risk of developing CLL. The authors noted that melatonin levels in that group were much lower than in controls that worked only day shifts. Working in straight night shifts did not show higher risks of CLL compared to daytime workers.
  8. In a Korean study from Seoul 100 female medical technologist who worked nighttime had their melatonin levels tested, which were compared to daytime workers.  They measured 1.84 pg/mL of melatonin for the nighttime workers compared to 4.04 pg/mL of melatonin in the daytime workers. The authors felt that this is proof that the diurnal hormone system has been disrupted. When the melatonin level is altered, the circadian hormone rhythm is also changed.
  9. A group of 168 female hospital employees doing rotating nightshift work in Southern Ontario hospitals were compared to 160 day workers. Cortisol production was assessed. Cortisol production in day workers and in shift workers on their day shift was similar. However, shift workers on their night shift had flatter cortisol curves and produced less cortisol. The authors felt that this disruption of cortisol production would explain why rotating night shift workers have a higher risk of cardiovascular diseases.
  10. A Danish study with female nurses followed 28,731 nurses between 1993 and 2015. Daytime nurses were compared to rotating nighttime nurses and the incidence of diabetes was measured. Night shift workers had a risk between 1.58-fold to 1.99-fold when compared to daytime workers to develop diabetes. The risk for evening shift workers was less (between 1.29-fold and 1.59-fold).

Diurnal hormone rhythm behind health risks of night shifts

Your body has its own rules. It rewards you, if you sleep 7 to 8 hours during the night, but it will penalize you severely, if you turn it upside down. The reason is our built-in diurnal hormone rhythm. A peak of melatonin regulates sleep during the night. Melatonin is released by the pineal gland (on the base of the skull) when it gets dark outside. Daytime wakefulness is regulated by the stress hormone cortisol from the adrenal glands. These two hormones inhibit each other, cortisol inhibits melatonin and melatonin inhibits cortisol. All the other hormones are also regulated according to the diurnal rhythm: testosterone is highest in the morning, human growth hormone is highest between midnight and 3 AM etc.

When you work daytime shifts, your diurnal hormone rhythm is unchanged. But if you work night time shifts, your hormones have to adapt. This is very similar to traveling east or west where you cross several time zones. Your internal diurnal hormone system has to adjust to these changes. Typically it takes 1 day to adjust to a 1-hour time zone difference.

In people who work permanent night shifts, the hormone changes stay adjusted and there is no further switching. But most employers want to be “fair” to everybody, so they introduced the rotating night shifts, which as all the publications cited above show is the worst thing you can do. It messes with your diurnal hormone rhythm, and some people never switch completely to the new hours worked. They don’t get enough daytime sleep because the kids are loud during the day etc. The rotating shift workers are running the highest risk of getting cancer, diabetes, cardiovascular diseases, obesity, cancer, leukemia, and they have low levels of melatonin.

Health Risks Of Night Shifts

Health Risks Of Night Shifts

Conclusion

When shift workers work constant night shifts, this is less stressful to our system than the more common rotating shift work. This is where you work night shifts for a period of time, then the schedule switches to day shift, and you keep on rotating. The least health risks are associated with regular daytime work. People exposed to rotating night shifts suffer from poor sleep. They have a higher risk of gaining weight, getting obese and acquiring diabetes in time. They are at a higher risk for heart attacks, strokes and cancer. All-cause mortality is about twofold higher than for workers who work day shifts.

The underlying problem seems to be a disturbance of the diurnal hormone rhythm. Normally this regulates our waking/sleeping rhythm and keeps us healthy. But with nighttime work melatonin production weakens, cortisol production is reduced and hormone rejuvenation during rest periods suffers greatly. This weakens the immune system, allows cancer to develop and leads to chronic inflammation causing cardiovascular disease and diabetes. The remedy to prevent this from happening is to catch little naps whenever you can during the day and, if at all possible, work daytime shifts permanently.

Oct
29
2016

High Insulin Levels Can Cause Alzheimer’s

Research published in April 2016 shows that high insulin levels can cause Alzheimer’s. Alzheimer’s disease has been known to occur more often in diabetics. But until recently it was not known why there would be this association. New research from New York University (NYU) has shed light on this puzzle. The key is an enzyme that breaks down insulin, called insulin-degrading enzyme (IDE). Melissa Schilling (no relation to me), an innovation professor at NYU has discovered the metabolic pathway between diabetes and Alzheimer’s disease. This finding has enormous implications regarding the prevention of Alzheimer’s, as I will discuss below. Here is a link to the original paper.

Background information about Alzheimer’s

Alzheimer’s disease affects about 5.2 million Americans and 44 million people worldwide. There is a progressive loss of cognitive functioning over a long period of time due to senile plaques in the cerebral cortex and the subcortical areas of the brain. These senile plaques are made up of amyloid-beta substance and of neurofibrillary tangles. This protein material is like glue, which prevents the neurons from working properly and causes memory loss and the confusion, which is so typical for Alzheimer’s patients. Normally amyloid-beta is in solution and prevents lipoproteins in the brain from oxidizing. But when the insulin-degrading enzyme is busy breaking down high levels of insulin, this enzyme system is overwhelmed. Amyloid-beta gets supersaturated, as it is not eliminated at a normal speed. This leads to the glue-like deposits of amyloid-beta in Alzheimer’s brains.

It is estimated that in 2004 the direct cost to the US of Alzheimer’s disease was $214 billion. By 2050 this could go up to $1.5 trillion, if no cure is found.

High insulin levels can cause Alzheimer’s, but other mechanisms too

Professor Schilling found in her research that there are four main malfunctions that can lead to high amyloid-beta in the brain of Alzheimer’s patients.

  1. With diabetes type1, when the patient does not receive enough insulin, the insulin-degrading enzyme in the brain is not working hard enough. This results in inadequate removal of amyloid-beta from the brain and neurofibrillary tangles of amyloid-beta are deposited.
  2. IDE requires zinc as a co-factor to work properly in breaking down amyloid-beta. Zinc deficiency is quite common, particularly in older people. With this mechanism insulin levels are normal, but amyloid-beta is removed poorly, as IDE function is diminished.
  3. In early type 2 diabetes there are high insulin levels and there is a competitive inhibition of the elimination of insulin and amylin-beta. This is probably the most common form of getting Alzheimer’s disease.
  4. Excess production of an amyloidogenic protein can lead to an overabundance of amylin-beta, which overwhelms the insulin-degrading enzyme.

What treatment options are there for Alzheimer’s disease?

Several implications follow from the four mechanisms that were described above.

  1. If a type 1 diabetic patient is insulin deficient, intranasal insulin would be beneficial.
  2. If the patient has type 2 diabetes, intranasal insulin or injected insulin would be the wrong approach. As stated earlier, there is the competitive inhibition of the elimination of insulin and amylin-beta. It is the insulin-degrading enzyme, which is the limiting factor. Simple dietary changes are needed where sugar is cut out and starchy foods are limited. This normalizes insulin levels and the IDE function returns to normal.
  3. Alzheimer’s patients and patients with mild cognitive dysfunction should be tested with glucose tolerance tests (GTT). It the test is abnormal, a knowledgeable dietician should be consulted.
  4. Obesity is strongly associated with hyperinsulinemia and diabetes. Again frequent GTT should be done followed by dietary intervention when abnormal.
  5. Professor Melissa Schilling stated that 86 million Americans are pre-diabetic, but they have no symptoms. Only glucose tolerance testing can diagnose that condition. This will prevent a lot of cases of diabetes and Alzheimer’s disease.
  6. Large parts of the population have no knowledge of the glycemic index of carbohydrates. In order to limit glucose overload and excessive insulin production educational nutritional programs are needed. This will be a powerful tool in Alzheimer’s disease prevention.
High Insulin Levels Can Cause Alzheimer’s

High Insulin Levels Can Cause Alzheimer’s

Conclusion

It has been known for some time that diabetics have a higher rate of Alzheimer’s disease. Alzheimer’s has also been called “Diabetes of the brain” or “Type 3 Diabetes”. This new research has shed some light on the connection of elevated insulin to Alzheimer’s disease. It was news to me that there is a competitive inhibition of the elimination of insulin and amylin-beta via the insulin-degrading enzyme. It boils down to recognizing that sugar overconsumption causes Alzheimer’s disease. If you want to keep your brain power until a ripe old age, you better eliminate a lot of sugar and adopt a healthy Mediterranean diet.

Oct
22
2016

Arthritis Drugs Can Cause Heart Failure

The British Medical Journal has published a research articles in Sept. 2016 showing that arthritis drugs can cause heart failure. This occurs particularly in elderly patients around the age of 77 years and older. This is an age where arthritis is often causing pain, and the pain is regulated with over-the-counter pills. These anti-arthritis drugs belong into the group of anti-inflammatory drugs, called NSAIDs. This stands for “non-steroidal anti-inflammatory drugs”. The study was entitled “Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries…”

Arthritis drugs can cause heart failure shows study

Adult patients above the age of 18 who started 27 different types of NSAIDs between 2000 and 2010 were followed. 92,163 hospital admissions for heart failure were noted; 8,246,403 patients who were not taking NSAIDS served as controls. There were 4 countries involved in this study providing 2.2 million patients from the Netherlands, 7.5 million from Italy, 13.7 million from Germany and 11.1 million from the United Kingdom.

Results of study

NSAID use of up to 2 weeks prior to assessment had a risk of 19% of resulting in a hospital admission for heart failure. A control group of patients who had not taken NSAIDs for at least 6 months or more had no hospital admission risk.

Seven traditional NSAIDs were found to be associated with hospital admission for heart failure. They were: diclofenac (brand name Voltaren), ibuprofen (brand name Motrin), indomethacin (brand name Indocin), ketorolac (brand name Toradol), naproxen (brand name Naprosyn or Aleve), nimesulide (brand name Mesulid and many others), and piroxicam (brand name Feldene). In addition two COX 2 inhibitors, etoricoxib (brand name Arcoxia) and rofecoxib (brand name VIOXX) were also having the same side effects.

  1. The risk for heart failure was not the same for every NSAID. The risks ranged from 1.16-fold to 1.83-fold. Specifically ketorolac had a risk of 1.83-fold, indomethacin 1.51-fold, piroxicam 1.27-fold, diclofenac 1.19-fold, ibuprofen 1.18-fold, and naproxen 1.16-fold. Translated into common language it means that ketorolac had a risk of 83% of causing a hospital admission due to heart failure. In the case of ibuprofen it was only an 18% risk.
  2. The risk for heart failure doubled for diclofenac, etoricoxib, indomethacin, piroxicam, and rofecoxib when used at very high doses. Doubling the risk means a 200% risk. Typically, when an arthritis patient has a flare-up of pain, this is the time when the NSAIDs are usually taken at a higher dose and tend to also be taken for a longer time. Some NSAIDs had a significant risk for heart failure even at a medium dose. This was the case for indomethacin and etoricoxib. The good news was that celecoxib (brand names Celebrex and Celebra) at usual doses did not lead to an increased risk of heart failure.
  3. Dose-response curves were obtained where possible. Here the researchers looked at the effect of low, medium, high and very high doses of NSAIDs in patients. Again heart failure occurrence was studied among those patients. The result clearly showed that low and medium doses of NSAIDs were fairly safe, but high and very high doses of NSAIDs caused heart failure. Etoricoxib, Piroxicam and Rofecoxib were particularly toxic in higher doses. Indomethacin was toxic at medium and high doses. An important exception to the rule was celecoxib (brand names Celebrex and Celebra), which did not cause heart failure, either at low doses or high doses. This is one of the most used NSAIDs, so it is fortunate that it does not cause heart failure.

Discussion of study

The authors of this study discussed why they believe heart failure is developing in patients who take NSAIDs. They argued that NSAIDs inhibit prostaglandin synthesis and the enzymes COX1 and COX2. This is how inflammation and pain gets inhibited, which is a good thing. But at the same time blood supply to the kidneys is reduced, kidney function is impaired, and sodium is retained. This is a bad thing as it leads to fluid retention and fluid overload of the heart resulting in heart failure. As the prostaglandin inhibition is dose-dependent, the authors said this is the reason that the heart failure rate is also dose-dependent when measured in large populations, as was done in this study. A noted exception, as already mentioned, is the popular celecoxib, which does not cause heart failure, even at high and very high doses.

Arthritis Drugs Can Cause Heart Failure

Arthritis Drugs Can Cause Heart Failure

Conclusion

This publication has a lot of statistical power as it was based on research in 4 European countries and involved almost 10 million subjects that were compared to an equally large control population. Because of the size of the study population it was possible to calculate risk ratios for NSAIDs causing heart failure for 27 different types of NSAIDs. Furthermore, the authors succeeded in quite a few cases to calculate risk factors for different concentrations of NSAIDs used. This statistical method is called a dose-response curve. It is a powerful pointer to toxicity when high doses cause heart failure, but low doses don’t.

The physician can use the information from this publication to select one of the NSAIDs that is least harmful, like celecoxib (brand names Celebrex and Celebra) and tell the patient to use the least amount possible to minimize side-effects. Many aging arthritis sufferers will benefit from this. Hopefully the FDA will review this material and shut down the use of some of the more dangerous NSAIDs or force the manufacturer to attach a black box warning about the drugs that belong into this category. You should review what your favorite NSAID is and discuss this with your physician. Perhaps print a copy of this review and take it with you, in case your health provider has not heard about it yet.

Oct
15
2016

Commuting Affects Your Health

A research report from Great Britain was recently reviewed by CNN; it revealed that commuting affects your health.

The longer we commute to work and back the more downtime we have where we do not move our muscles. But we also are exposed to more unhealthy snacks and sugary drinks that make us deposit more fat. The original research report was published here. What were the elements of this study?

Commuting affects your health, study design

Three consecutive annual waves of the British Household Panel Survey were utilized. These are longitudinal surveys of nationally representative households in Great Britain. The sample years were 2004/2005, 2005/2006 and 2006/2007. There were 15,791 participants in the study. Of these 4,056 were selected for the study. The main mode of travel to work was determined at each time point. The self-reported height and weight was taken to calculate the body mass index (BMI) at baseline and at 2 years. Attention was paid to switches of transportation mode (that is from active to sedentary and vice versa).

Commuting affects your health, results of study

  1. Switching from car commute privately to active travel (walking, bicycling) or public transport resulted in a significant loss in BMI. There were even larger reductions of BMI’s in those who enrolled in the first year in active transportation, because of the longer exposure. Those with the longest journeys who used active transportation had significant weight losses.
  2. A group of 787 people switched from active travel or public transport to the use of their private cars as transportation. This resulted in a significant BMI increase.
  3. The study concluded that any interventions that would allow private car commuters to switch to an active mode of transportation could contribute to the population’s BMI being reduced significantly.

Commuting affects your health, Cambridge experiment

In a 2016 study from Cambridge (Great Britain) a similar experiment was done. They studied traffic patterns in the county of Cambridgeshire. 1143 adults working in the city were compared with 1710 people who used the Cambridgeshire Guided Busway and who were intercepted. A new bus network that is intertwined with pedestrian pathways and cyclists had been open to the public since 2011. Walking and cycling were incorporated into longer commuting journeys where otherwise private car and public commute were used. There was a 1.8-fold increase of active travel after exposure to intervention where the benefit of active travel was explained to people. There was also a 2-fold decrease of commuting solely by car. The weekly cycling commuting time had increased to 1.34-fold compared to the previous level.

Those who had been most inactive in their commute at baseline were the ones who appreciated an active commute most. There was an association of active commuting, greater overall physical activity with an improvement of health and weight loss.

Commuting affects your health, US study

A multi-city study involved the largest 3,914 municipal jurisdictions, which were located in 473 of the most populous U.S. counties. This involved 48 states and the District of Columbia. In order to encourage more active commuting (walking, cycling) pedestrian zones or pedestrian-friendly zones with adjacent bus transportation were developed by many municipalities. A new concept of transit-oriented developments or districts (TODs) was adopted. TODs are higher density areas that are compact. They are mixed use areas, which are located around transit stops. This encourages walking. The study was published in 2016 and showed that the TOD zones had higher occupancy rates and many house owners had no car as they used public transportation only. TOD zones were more populous, people in it had higher income, and they were more racially diverse and younger. The occupants of TOD zones had a 2.1-fold higher rate of using public transportation and they also had a 2.48-fold higher rate of using active transportation to work.

Commuting affects your health, general comments

The majority of commuters in England and Wales spent 56 minutes in their cars going to and from work in 2013. In London this daily commuting time is 79 minutes. The US data are similar.

With a well-developed public transportation system the authorities developed various programs designed to replace at least some part of the commute by active commuting. This is good for your metabolism, it is good for your cardiovascular status and it gets you away from snacking junk foods while you are bored in your car.

In an poll from London, England where more than 1500 commuters were polled 55% reported increased stress levels, 33% reported increased snacking, 29% admitted to fast food consumption, 36% complained about sleeping problems, 41% said that they were doing reduced physical activity and 44% reported that they spent reduced time with their friends and family. 58% felt that flexible work hours would improve their health and wellbeing. Remember that how you are commuting affects your health.

My own experience watching commuting in various cities

Over the years I have traveled extensively in Germany, Austria and the US. In Europe it is interesting how many years ago the pedestrian zones in the old town centers have reshaped the commuting. The U-Bahn (subway) and commuter trains have intermingling networks that shoot you out to pedestrian zones. You are forced to walk before you can catch a connecting bus or tram.

  1. Vienna (Austria) for instance allows you to get out at the U-Bahn station of Stephansplatz, which is a pedestrian zone around the Stephan’s Church (Stephanskirche). There is an amazing array of shops and in a side alley you can even find a Starbucks, if you are so inclined. When you get tired of walking, you hop onto any of the U-Bahn connections. This brings you where you need to be. If you are too far from your goal, hop onto a tram and enjoy the sightseeing. There are also buses that can get you there. It is all covered under the same Vienna card, which I appreciated as a visitor. It is best to park your car in the periphery and use the commuting network to get you to where you want to go.
  1. Munich (Germany) has a lot of cycle paths, which run parallel to the pedestrian paths. I was surprised recently to see business people in black suits cycle to work. Otherwise there are the U-Bahn, S-Bahn, trams and buses that all interconnect.
  2. Münster (North Rhine-Westphalia, Germany) has an extensive network of cycle paths and pedestrian walks. Buses and trams are also constantly running. The old historic town is a pedestrian zone, but anybody can commute to anywhere between walking or using the bus/tram. I was amazed this spring when I visited; there were hundreds of people, young and old who cycled to and from work. The employers are providing huge metal racks where people can attach their bikes to with a lock.
  1. Berlin is another multi level commuting city in Germany. You can use the U-Bahn, S-Bahn (commuter train), bus or tram to get to work. Here is an informative video that explains.  I did not see many cyclists there. But hundreds of people are walking. Yes, there are many pedestrian zones and they interconnect with all of the commuter options. Berlin spreads over a vast area, so the S-Bahn, which is a local commuter train is particularly important. The shorter connecting trips are done by U-Bahn (subway). Buses and trams do the fine-tuning to get to your destination.
  2. Vancouver (BC, Canada) has some cycle pathways in the West end, close to Stanley Park. Otherwise there is a network of buses, the Skytrain, Sea Bus (between North Vancouver and downtown) and the West Coast Express (a commuter train). For the size of the city I think that Vancouver could benefit from studying some of the transportation modalities in Europe to entice the car travelers to use public transportation. When I travel to Vancouver, I use my own car, as it is so much faster to reach any goal. Public transportation is at this point not effectively connecting all the areas in this city.
Commuting Affects Your Health

Commuting Affects Your Health

Conclusion

In the past we often heard that there was nothing that could be done about traffic jams and commuter stress. Think again. Revitalization of city cores all over Europe, Great Britain and in the US has taken the TOD concept to heart and active commuting has become a reality. Whenever you can, use alternatives like cycling, walking and public transit to get to and from work. Studies have even shown that when you become an active commuter you likely will also become more active after work. Even using public transit makes the commute more active, as you are not sitting for an hour or more in your vehicle. You have to get out and walk in order to catch a connection. This all helps to keep you physically more fit than the commuting style, where you sit in a vehicle and possibly dip into junk food. It is not only about body mass index reduction and decreasing your waistline. Active commuting is also a lot less stressful than the passive modality, where traffic jams add to frustration and stress at the beginning and at the end of a workday.

Oct
08
2016

Vitamin D3 Protects Your Brain

More and more studies are showing that vitamin D3 protects your brain. It protects against MS, but also against Parkinson’s disease and Alzheimer’s disease. In the following I will review what evidence there is to support each of these topics.

Vitamin D3 protects your brain from multiple sclerosis (MS)

It has been known for some time that in the northern hemisphere MS is more common because of the lack of sunshine, which in turn produces less vitamin D3 in the skin.

MS is an autoimmune disease where immune cells attack the lining of nerves. Both nerve cells and immune cells have vitamin D receptors. It appears that immune cells are calmed down by vitamin D3 and remission of an MS relapse is more likely.

There are two forms of MS, the relapsing-remitting MS and the progressive MS. The first one (relapsing-remitting) is more common. After a bout of active MS, the illness calms down and the condition of the patient is stable for some time until the next relapse occurs.

With progressive MS there are two forms, primary progressive MS and secondary progressive MS. The primary form is a case of MS where symptoms steadily worsen, without any remission. The secondary form of progressive MS occurs at the end of fairly stable relapsing-remitting MS. Symptoms become more pronounced and the condition deteriorates steadily from there.

Progression and disability in MS patients with various vitamin D3 levels

Dr. Fitzgerald and colleagues published a study in JAMA Neurology in 2015.

They took 1482 men and women who were on interferon beta-1b treatment. This treatment utilizes the immunomodulator interferon beta-1b and reduces the number of relapses in patients with MS. The study took place between November 2003 and June 2005. Results were analyzed between June 2013 and December 2014. The researchers measured vitamin D levels (as 25-hydroxy vitamin D). The vitamin D levels were obtained at baseline, at 6 months and 12 months.

The number of brain lesions were measured by MRI scans. All of the patients also underwent a functional test, called expanded disability status scale. This measured impairment of ambulation, ability to communicate and activity levels.

Results of this study showed marked differences between patients with high and low vitamin D levels. Those patients who had the highest vitamin D blood levels (more than 40 ng/mL) had the lowest rates of new MS lesions. Previous studies had found that a low blood level of vitamin D (less than 25 ng/mL) in patients was associated with a much higher risk of developing MS. Dr. Fitzgerald’s study showed that a 50.0-nmol/L increase in serum vitamin D levels associated with a 31% lower rate of new MS lesions. Patients with the highest vitamin D level of more than 100 nmol/L had the lowest amount of new MRI lesions (47% less than the patients with the lowest vitamin D levels).

Another study showed that a low-dose vitamin D level accelerated MS. There was a 5.9-fold risk converting the initial relapsing-remitting form of MS into the secondary progressive form of MS.

All these studies show that vitamin D3 can decrease the risk of getting MS. In addition vitamin D3 also delays progression in those who have MS.

Vitamin D3 protects your brain from Parkinson’s disease

Vitamin D3 plays a role in preventing Parkinson’s disease.

Parkinson’s disease is a neurodegenerative disease that causes tremor in muscles, causes balancing problems and eventually can lead to dementia. A metaanalysis was done in 2014 and 7 studies where identified to be relevant. The authors were looking for correlation of vitamin D levels with Parkinson’s disease. 1008 patients were included in the metaanalysis with 4,536 controls.

  • Patients with a vitamin D level of less than 75 nmol/L had a 1.5-fold higher risk of developing Parkinson’s disease than the controls.
  • Patients with a vitamin D level of less than 50 nmol/L were at a 2.2-fold higher risk of developing Parkinson’s disease.

Another metaanalysis utilized 5,690 Parkinson’s disease patients and 21251 matched controls.

It found that vitamin D levels of less than 20 ng/ml were associated with a risk of 2.08-fold to develop Parkinson’s disease. Interestingly, vitamin D3 supplementation reduced the risk of Parkinson’s disease by 38%. Outdoor work reduced the risk of developing Parkinson’s disease by 28%.

Vitamin D3 protects your brain from Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative disease of old age. We know that it is much more common in patients with type 2 diabetes where insulin levels are high. Studies have shown that Alzheimer’s disease can be termed type 3 diabetes.

The resulting neurofibrillary tangles and amyloid-beta deposits damage nerve cells, which are responsible for the memory loss and the profound personality changes in these patients.

What does vitamin D3 have to do with this?

A 2014 study showed that a low vitamin D level was associated with a high risk of dementia and Alzheimer’s disease.

Specifically the following observations were made.

  • Vitamin D level of less than 10 ng/ml: 122% increased risk of Alzheimer’s
  • Vitamin D level 10 to 20 ng/ml: 51% increased risk of Alzheimer’s

The same research group found in two trials that vitamin D deficiency leads to visual memory decline, but not to verbal memory decline.

Vitamin D3 combined with metformin suppresses cancer

The newest development with respect to vitamin D3 is the finding that it also has anti-cancer effects. Dr. Li demonstrated that vitamin D reduced prostate cancer cell line growth by 45% while metformin alone reduced it by 28%.

But when both vitamin D and metformin were present in the cell cultures there was growth inhibition of 86%. Dr. Li explained that vitamin D potentiated the growth inhibitory effect of metformin.

Vitamin D3 protects your brain: guidelines to proper vitamin D3 dosing

For years the medical profession stated that 400 IU of vitamin D3 would be enough supplementation. It may be enough to prevent rickets in children. But these low doses will be insufficient in many patients who are deficient for vitamin D to prevent MS, Parkinson’s disease, Alzheimer’s disease or cancer.

A study on medical staff in Northern India showed that 85% of the staff had very low vitamin D levels of less than 10 ng/ml.

It took high doses of vitamin D3 to increase the vitamin D level in the blood.

Generally supplements of vitamin D3 of 5000 IU to 8000 IU are the norm now. But some patients are poor absorbers and they may require 15,000 IU per day. What the patients need can be easily determined by doing repeat vitamin D blood levels (as 25-hydroxy vitamin D). The goal is to reach a level of 50-80 ng/ml. The optimal level with regard to nmol/L is 80 to 200 (according to Rocky Mountain Analytical, Calgary, AB, Canada).

Vitamin D3 Protects Your Brain

Vitamin D3 Protects Your Brain

Conclusion

Many people are deficient with regard to vitamin D, and they do not know it. The most important thing is to do a vitamin D blood test to assess your vitamin D status.

We know for a long time that vitamin D plays a role in bone metabolism and this is why women approaching menopause often need vitamin D3 supplementation. But it may come to you as news that vitamin D3 also protects from MS, Parkinson’s disease and Alzheimer’s disease. In addition, as indicated above, we know that many cancers are suppressed by taking vitamin D3 regularly.

When you realize that all body cells have vitamin D receptors on their surface, it is no surprise that vitamin D3 is so important to take. The vitamin D3 receptors must be there for a reason. If your body is deprived of this valuable vitamin, the high risk of degenerative diseases will be the consequence.

Oct
01
2016

Sugar Can Cause Heart Attacks

Recently an online medical journal article from JAMA has revealed that sugar can cause heart attacks. As the Guardian reports, this analysis of influence peddling of the sugar industry going back 60 years has had far-reaching effects by confusing the public and policy makers in the US and around the world. At the same time the interference of the sugar industry was protecting its own interests. It increased sugar sales, but made people sick with obesity, diabetes and cardiovascular disease. This story is similar to the tobacco industry that was able for years to cover up that cigarette smoke is causing heart attacks and lung cancer.

Denying that sugar can cause heart attacks

When the English physiologist John Yadkin noted in the 1960’s that sugar was elevating cholesterol and triglycerides, the sugar industry was panicking. Something had to be done to stop this new research. As we can read in the online JAMA review the Sugar Research Foundation (SRF) had 319 correspondences (1551 pages) with Roger Adams. He was a professor who served on the SRF’s scientific advisory board (SAB) from 1959 to 1971. Another piece of evidence of influence peddling came from a review of correspondence between the SRF and D. Mark Hegsted. He was professor of nutrition at the Harvard School of Public Health. At the same time he was co director of the SRF’s first coronary heart disease research project. This took place from 1965 to 1966. There are 27 documents totaling 31 pages in the Harvard medical Library. It is clear from this correspondence that the SRF was looking for a way to undermine the new research findings of negative effects of sugar. The SRF was looking for a way to confirm that fat reduction would be beneficial for patients. This way many people would be put on a low fat diet, which in turn would ensure continuing and rising sales of sugar.

New evidence that sugar can cause heart attacks

New research came out by D. Mark Hegsted in the Annals of Internal Medicine in June 1965. It linked sugar consumption to cardiovascular disease. It noted that blood sugar levels were a better predictor of hardening of arteries than cholesterol levels or high blood pressure. Another paper stated that it was sugar rather than starches causing high triglycerides in the blood. He hypothesized that “perhaps fructose, a constituent of sucrose but not of starch, was the agent mainly responsible.” An editorial in the same publication noted that these new findings corroborated Dr. Yudkin’s previous research that sugar could cause heart attacks.

The sugar industry was very concerned about these studies. If publicized widely, it would have the capacity to lower sugar sales.

Sugar can cause heart attacks, but review paper ignores this

On July 1, 1965, the SRF’s Hickson visited D. Mark Hegsted to discuss his publication. He wanted him to be part of an extensive literature review that would show that it was too much saturated fat that was the cause of high cholesterol and triglycerides, not sugar. It also should state that a lowering of fat content from 40% to 20% was necessary and that polyunsaturated fatty acids should be used to replace much of the fat. The fact that the food industry would quietly increase sugar content in processed foods was not mentioned. The review paper was called “Project 226”. It resulted in a 2-part literature review by McGandy, Hegsted, and Stare. It was entitled “Dietary Fats, Carbohydrates and Atherosclerotic Disease,” and was published in the New England Journal of Medicine (NEJM) in 1967. Industry and non-industry funding of the review authors’ experimental research was disclosed. However, the funding by the Sugar Research Foundation was omitted. The authors of the study received handsome amounts of money from the SRF for their efforts. The story that was fabricated is all too well known, but false. It claimed that the medical literature would have shown that a reduction of saturated fat intake would lower cholesterol. It ignored triglyceride levels and stated that only cholesterol levels were significant with respect to coronary artery hardening. It also stated that replacement of saturated fat with polyunsaturated fatty acids like corn oil would also be beneficial in reducing heart attack rates.

Effect of the literature review on heart attack rates

Sadly the NEJM literature review has resulted in government policy for decades where the gospel was preached that a low fat diet would prevent heart attacks. The food industry has prepared processed foods, all low in fats and high in sugar that were supposed to he healthy. But the extra sugar made people fat, it did not decrease heart attack rates, but made them more frequent. Strokes were also on the rise and diabetes has become rampant. The reliance on corn oil has introduced another problem: omega-6 fatty acids are now consumed at an alarming rate. Corn oil has a 1:59 ratio for omega-3 to omega-6 fatty acids.

This means that corn oil contributes to the lack of omega-3 fatty acids in our food. When the ratio of omega-3 to omega-6 fatty acids falls below 1:3 or 1:4 the metabolism changes towards inflammation as the arachidonic acid system switches toward inflammation. Cardiologists have pinpointed inflammation as an important cause of hardening of arteries. Fish oil, a rich source of omega-3 fatty acids helps to prevent hard attacks and strokes.

The end result of the confusion regarding fat, sugar and heart attacks caused by the biased literature review meant misery, suffering and death for many for decades. But recently there has been a renaissance of Dr. John Yadkin’s research: Now it is clear what sugar is doing and how it affects our health.

How sugar can cause heart attacks and more

It is clear that sugary soda has detrimental effects on us: as little as one or two cans of sugary soda drinks per day lead to

  • 26 percent greater risk of developing type 2 diabetes,
  • A 35 percent greater risk of heart attack or fatal heart disease, and
  • A 16 percent increased risk of stroke.

Dr. Frank Hu has participated in a study that spanned over 24 to 30 years and examined the replacement of saturated fat with polyunsaturated fatty acids (PUFA), monounsaturated fatty acids and whole grain carbohydrates. The study involved 84,628 women (Nurses’ Health Study, 1980 to 2010), and 42,908 men (Health Professionals Follow-up Study, 1986 to 2010). The diet was assessed with detailed questionnaires every 4 years. 7,667 cases of cardiovascular disease (CHD) occurred during the long observation times. Compared to controls that did not change their diet with respect to saturated fatty acid intake, those who replaced with PUFA had 25% less CHD, those who replaced with monounsaturated fatty acids had 15% less CHD and those who replaced saturated fatty intake with whole grains had 9% less CHD. In contrast, a subgroup that had replaced saturated fatty acid intake with carbohydrates from refined starches/added sugars ended up with a 10% increase of CHD.

We know now that sugar can increase cholesterol and triglycerides as Dr. John Yadkin has said in the 1960’s.

We also know that sugar can cause arthritis when combined with low omega-3 fatty acids and high omega-6 fatty acids. In the 1950’s Dan Dale Alexander wrote a book called “Arthritis and common sense”. The medical establishment did not accept that simple remedy and Dan Dale Alexander was classified as a “quack”. However, Dr. Mirkin describes a study from Berlin that later confirmed that Dan Dale Alexander’s observation was correct: an emulsion made by shaking orange juice with cod liver oil and taken three times per day on an empty stomach would indeed improve osteoarthritis.

High glycemic foods (sugar, starchy foods) were associated with breast cancer, colorectal cancer and endometrial cancer. The majority of trials showed this association although not all. The more obese patients were, the more pronounced the insulin resistance was and the more the relationship to these cancers became apparent. A diet that is high in starchy foods like potatoes, rice and bread is causing pancreatic cancer as was shown by researchers at the Dana-Faber Cancer Institute, Brigham and Women’s Hospital and Harvard School of Public Health.

Sugar Can Cause Heart Attacks

Sugar Can Cause Heart Attacks

Conclusion

The low fat/ high glycemic diet was a fad-diet based on fictitious science, sponsored by the sugar industry. In a way it became a human experiment and resulted in 60 years of suffering to show that this diet did not work. It caused the obesity wave, a wave of heart attacks, strokes and cancer, all caused by too much sugar in the diet. Associated with this are the consumption of processed foods with too much sugar and an abundance of omega-6 fatty acids causing inflammation and hardening of the arteries.

We finally know that sugar raises cholesterol (LDL cholesterol in particular) and triglycerides. This leads to fat deposits and hardening of the arteries resulting in strokes and heart attacks. Remove refined sugar, limit your starchy food intake and eat fish as a source of omega-3 fatty acids. Feast on vegetables, salads and have some nuts as another source of omega-3 fatty acids and you are well on your way to preventing heart attacks, strokes and many cancers. After reading all the facts it does no longer make sense to be a victim of the sugar industry and the associated health risks.