• Only moderate alcohol consumption benefits your heart

    Only Moderate Alcohol Consumption Benefits Your Heart

    A new study from England finds that only moderate alcohol consumption benefits your heart. The study was released on March 22, 2017 in Great Britain. 1.937 million people (51% women, 49% men) had participated in this investigation over 6 years. The lead author, Dr. Steven Bell is a genetic … [Read More...]

  • What Foods Lower Insulin Resistance?

    What Foods Lower Insulin Resistance?

    When people get diabetes or prediabetes, what foods lower insulin resistance? You may have heard that eating too many carbs and gaining weight can cause high insulin values. This causes the body’s insulin receptors to become sluggish, a condition called insulin resistance. Continuing to eat too many … [Read More...]

  • Breast Cancer Risks

    Breast Cancer Risks

    Dr. David Zava, PhD gave a talk on breast cancer risks. This was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The detailed title was: “The Role of Hormones, Essential Nutrients, Environmental Toxins, and Lifestyle Choices on … [Read More...]

  • When Food Causes Inflammation

    When Food Causes Inflammation

    Dr. Hal Blatman gave a talk about when food causes inflammation. His talk was presented on Dec. 9 at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The original title was “Food, Pain and Dietary Effects of Inflammation”. Dr. Blatman is the … [Read More...]

  • How Stress Affects Our Hormone System

    How Stress Affects Our Hormone System

    Dr. Andrew Heyman gave a talk recently about how stress affects our hormone system. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Understanding the Stress, Thyroid, Hormone Connections & … [Read More...]

Apr
22
2017

Only Moderate Alcohol Consumption Benefits Your Heart

A new study from England finds that only moderate alcohol consumption benefits your heart. The study was released on March 22, 2017 in Great Britain. 1.937 million people (51% women, 49% men) had participated in this investigation over 6 years. The lead author, Dr. Steven Bell is a genetic epidemiologist. He said that this study was done to clear up some of the confusion from previous studies. He wondered why the control group without alcohol exposure had more cardiac problems than the moderate group. It did make sense though, that the high alcohol group had worse cardiac problems.

But he and researchers from Cambridge University and University College London did this study to get more detail. They wanted to know why the current non-drinking group used as a control was not looked at more carefully. It consisted of a mix of lifelong abstainers; people who drank formerly, but then gave it up. And the other group was those who drink on an occasional basis.

With this in mind the researchers designed their study. They also used also larger numbers to increase the reliability of the study.

Details of English study

The data comes from the Clinical Practice Research Datalink providing anonymous patient records from general practices in England. The patients upon entry into the study had to be older than 30 years, but have no evidence of cardiovascular disease. A total of 1,937,360 patients qualified to be part of the study.

Based on patients’ records and patients recollections people, researchers looked at 5 classes of drinkers:

  • Non-drinkers (14.3%)
  • Former or ex-drinkers (stopped drinking at one point, 3.7%)
  • Occasional drinkers (drinking rarely, 11.9%)
  • Moderate drinkers (drinking within sensible limits, 61.7%)
  • Heavy drinkers (hazardous alcohol use, 8.4%)

The end point of the study researchers concentrated on the frequency of cardiovascular diseases like angina, heart attack, sudden cardiac death, stroke, peripheral arterial disease, abdominal aortic aneurysm and others. I only listed 6 of the 12 cardiovascular diagnoses as otherwise it would get too technical.

More information: Most study participants were non-smokers, their BMI was within normal limits, and they also did not have diabetes.

Findings of the study

There were significant differences among subclasses of alcohol consumption and the development of cardiovascular diseases over 6 years.

  1. The findings were in line with a number of previous similar studies that showed a U-type dose response curve between developing cardiovascular diseases and alcohol consumption. The group of non-drinkers (where former and occasional drinkers were removed) often had a 20% to 56% increased risk of developing cardiovascular disease, while moderate drinkers had no added risk.
  2. On the other hand the heavy drinkers were at risk of developing cardiac arrest (50% increased risk) or heart failure (22% increased risk). A death from a sudden heart attack occurred in heavy drinkers with a risk of 21% increased risk. A former drinker had a 40% increased risk for this, but a non-drinker a risk of 56% increased risk!
  3. A non-drinker had a 32% increased risk of getting a regular heart attack, a former drinker had a 31% increased risk, an occasional drinker 14%, a moderate drinker no added risk, and a heavy drinker had a 12% reduced risk! This seemed to show that drinking alcohol keeps the coronary arteries open and clean. I have had pathology demonstrations with Professor Dr. Adalbert Bohle at Tübingen University during my medical training in 1969. At that time he pointed out how clear and wide open the coronary arteries were in chronic alcoholics. It was not heart disease that killed those patients; they had died from end stage liver cirrhosis, and we saw pathological slides of that.
  4. Heavy drinkers get more ischemic strokes (33% increased risk) and more intracerebral hemorrhages (37% increased risk).
  5. Obstruction of blood vessels in the lower legs (peripheral arterial disease) is common with heavy drinkers (35% increased risk) and even former drinkers (32% increased risk). Non-drinkers have a 22% increased risk while moderate drinkers have a 0% risk (no increased risk).
  6. There was no association between heavy drinking and aortic aneurysm. On the other hand, non-drinkers (32% increased risk) and former drinkers (23% increased risk) showed an increased risk of aortic aneurysm formation.

Other effects of alcohol consumption

The study above did not take into consideration that alcohol consumption has many other consequences beside cardiovascular effects. One for instance is the effect on the brain and the increase of serious car accidents. Another effect is the causation of cancer.

The American Cancer Society clearly states that alcohol consumption has been causatively associated with the following cancers.

  • Cancer of the mouth
  • Cancer of the pharynx (throat)
  • Cancer of the larynx (voice box)
  • Cancer of the esophagus
  • Cancer of the liver
  • Cancer of the breast
  • Cancer of the colon
  • Alcohol also plays a role with cancer of the pancreas

Many studies have shown a dose-response curve between alcohol consumed and the development of these cancers. In other words there is never a safe low dose, below which no cancer would be caused over time.

These authors conducted a metaanalysis of 16 prospective cohort studies including 6,300 patients. It showed that alcohol caused cancer of the colon and rectum. High intake of alcohol showed a 50% increased risk of causing colon cancer. With regard to rectal cancer the risk was 63% higher. In both cases the highest alcohol intake was compared to the lowest category of alcohol intake.

These authors concluded their discussion by pointing out that 6% of the worldwide cancer deaths are attributed to alcohol intake. They also stated that colorectal cancer risk increased by 50% in the heaviest alcohol users. Among the group of heavy drinkers the cancer death rate would likely be 9%. There would a reduction of mortality from cardiovascular disease by one third in middle and old age. The end result would be 6% mortality again; essentially there is no change.

No matter how you try to solve this equation, there is a risk of cancer deaths from exposure to alcohol. There is also a risk that heavy drinking can cause significant cardiovascular diseases mentioned.

Only moderate alcohol consumption benefits your heart

Only moderate alcohol consumption benefits your heart

Conclusion

Everything we do in life has consequences. With regard to drinking you know that accidents are more common in drinkers; with prolonged exposure to higher alcohol consumption you can get dementia. Moderate amounts appear to have significant protection from heart disease, but the risk for several cancers is not negligible. This point was not mentioned in the study I discussed in the beginning of my blog. In the latter part I included some data about cancer risks from alcohol consumption.

The paradox remains that non-consumption of alcohol is associated with a significant cardiovascular risk because of a U-shape dose response curve. Moderate alcohol use is associated with the lowest cardiovascular risk. The question is whether we can balance moderate drinking with staying in the low cancer risk area. The recommendation of 1 glass of wine for women and 2 glasses of wine for men has been confirmed by the above study. This is considered a healthy preventative dose with respect to cardiovascular risk. It is the official recommendation for cardiovascular disease prevention. The cancer literature clearly states that there is a small cancer risk from moderate alcohol intake. This is particularly true for the 8 cancers discussed.

Dr James Nicholls, the director of research and policy development at Alcohol Research UK had this to say. He pointed to the fact that there are other ways to prevent cardiovascular disease. For those who do not drink at present it would not make sense to take up drinking. You can strengthen your heart by starting a Mediterranean diet and starting to exercise regularly. The beneficial substance for your heart in red wine is known as resveratrol that can be taken as a supplement. Resveratrol has no side effects and does not have the cancer risk of an alcoholic drink. Dr. Nicholls added, “If you drink within the existing guidelines it is unlikely that alcohol will either lengthen or shorten your life.” It is really up to every individual to balance the wine glass with personal health!

Apr
15
2017

What Foods Lower Insulin Resistance?

When people get diabetes or prediabetes, what foods lower insulin resistance? You may have heard that eating too many carbs and gaining weight can cause high insulin values. This causes the body’s insulin receptors to become sluggish, a condition called insulin resistance. Continuing to eat too many refined carbs leads to a critical point. You can suddenly run out of enough insulin and would develop type 2 diabetes at this time.

So, what foods lower insulin resistance?

Low glycemic food

Insulin resistance and type 2 diabetes occur because people do not pay attention to the glycemic load of the food they choose. Many people eat bread, pasta and starchy vegetables like potatoes. They also eat excessive sugary sweets, such as cupcakes, ice cream, or chocolate bars. All the pancreas can do is keeping blood sugar stable by overproducing insulin. But you can assist your pancreas to not overwork itself.

Leave the high glycemic index foods alone. Instead eat low glycemic foods like non-starchy vegetables (peppers, broccoli), lean meats, fish and nuts. Add high-fiber foods like beans and some whole grains. Eat foods rich in omega-3 fatty acids like salmon. Have a dessert with berries that are rich in antioxidants. Blueberries, strawberries, raspberries and black berries are all low glycemic foods, rich in vitamin C and antioxidants. They are “nature’s candy”.

Research on insulin resistance

In a study from Singapore differences of insulin sensitivity were found between lean Asian Indians and Chinese and Malays, living in Singapore. The Asian Indians had less insulin sensitivity, which means they had higher insulin resistance. This is presumed to be due to a genetic variant of insulin sensitivity.

Another lengthy publication investigated the connection between metabolic syndrome and insulin resistance. In addition it examined the connection of heart attacks and strokes to wrong diets. It also pointed out that diabetes and cardiovascular disease could be reduced significantly. How can this be achieved? By adopting a healthy diet that also leads to weight loss.

Diets in the US and in the Western world have major shortfalls, due to the fact that people consume not enough vegetables, fruit and whole grains. Instead we see a higher intake of red and processed meat. In addition there was higher intake of sugar-sweetened foods and beverages. Refined grains and flour products are another unhealthy food source. In the US and other westernized countries we see an overconsumption of sodium and saturated fat.The key to a healthy diet was adopting a Mediterranean diet. A study was described where a group of patients with metabolic syndrome were encourage to consume whole grains, vegetables, fruits, nuts, and olive oil. The control group simply followed a “prudent” diet. Two years later the group on the Mediterranean diet was found to have the following results: they had a higher intake of monounsaturated fat (olive oil) and polyunsaturated fat (fish oil) and fiber. Their omega-6 to omega-3 ratio had decreased. The high-sensitivity C-reactive protein, a general measure for inflammation, had decreased. Other inflammatory kinins like interleukins had also decreased. The insulin sensitivity endothelial function score showed improvement. The important part overall was that the Mediterranean diet prevented the metabolic syndrome compared to the “prudent” control diet.

In 2013 a study from Spain was looking for positive effects when supplementing with olive oil or nuts. A Mediterranean diet with extra olive oil or extra nuts reduced the risk of heart attacks in a high-risk group compared to controls. The study included 7447 persons and these were the results after 4.8 years: the Mediterranean diet group that used more olive oil had 28% fewer cardiovascular events compared to the control group. The Mediterranean diet group with nuts had 30% less events. Heart attacks, strokes or death from cardiovascular disease were these “events”!

What foods are unhealthy?

In order to be able to avoid unhealthy foods it is important to identify what harms us. Foods to avoid are listed in this link. Sweetened beverages, fountain drinks, sodas and fruit juices are loaded with sugar. They will cause an insulin response and on the long-term insulin resistance. Avoid starchy vegetables, such as potatoes, pumpkin, corn, and yams. Also avoid processed snacks and boxed foods. Starchy foods are broken down into sugar, which stimulates insulin release again. Your no-food list continues with excessive sugary sweets, such as cupcakes, ice cream and chocolate bars. White bread, rice, pasta, and flour are also starchy, and the body breaks down starch into sugar and stimulates insulin production.

Some saturated fats are acceptable, but hydrogenated fat must be avoided altogether.

Epigenetic factors regarding insulin resistance

A recent publication on March 14, 2017 investigated the effect of exercise on insulin sensitivity in a mouse model where the mother mouse was obese.

Pregnant, obese mice were insulin resistant and the offspring came down with diabetes. But when the pregnant mice were exercised, the insulin sensitivity came back to normal. In addition the offspring were not diabetic. This effect was not due to genetic factors. Instead the authors believe it was due to epigenetic factors, in this case treating insulin resistance with exercise. When the pregnant mother turns insulin sensitive, the offspring is programmed to regulate their blood sugar metabolism normally.

An April 2017 study from Korea investigated the effects of healthy nutrition on patients with metabolic syndrome and insulin resistance. They noted that avoiding unhealthy foods could normalize markers of disease.

The authors discuss how nutritional factors can contribute to inheritance of epigenetic markers in the next generation. They also showed how dietary bioactive compounds could modify epigenetic factors. Taking dietary components that regulate epigenetic factors contribute significantly to health. The authors concluded that a healthy diet could prevent pathological processes that otherwise would cause metabolic disease.

What Foods Lower Insulin Resistance?

What Foods Lower Insulin Resistance?

Conclusion

It is interesting to note that insulin resistance can be reversed into insulin sensitivity by eating healthy foods. Research papers are now describing how a healthy diet of the mother can affect her offspring positively. These effects are due to epigenetic factors, as genetic factors have not changed.

We are already hearing that diseases like heart attacks, high blood pressure, strokes, diabetes and others can largely be prevented by a proper diet. The key is to avoid high glycemic foods and eat low glycemic foods instead. It is not complicated. Eat non-starchy vegetables (leafy greens, peppers, broccoli), lean meats, fish and nuts. Add high-fiber foods like beans and some whole grains. Eat foods rich in omega-3 fatty acids like salmon. The end result is that insulin resistance disappears and metabolic processes return to normal. This was what Hippocrates had in mind when he stated “Let food be thy medicine and medicine be thy food.”

Apr
08
2017

Breast Cancer Risks

Dr. David Zava, PhD gave a talk on breast cancer risks. This was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The detailed title was: “The Role of Hormones, Essential Nutrients, Environmental Toxins, and Lifestyle Choices on Breast Cancer Risk”.

He pointed out that both estrogens and progesterone are safe hormones, as long as they are not overdosed and they are balanced. Unfortunately many women in menopause have too much estrogen on board as the ovaries are still producing them, but there is a lack of progesterone, the moderating hormone that makes estrogen safe.

In the following I am summarizing Dr. Zava’s talk with regard to the essential messages, but leaving away much of the highly technical detail that was presented as this would dilute the message of this blog. I will include a few links for those who are inclined to read more details about the topic.

Balance between estrogen and progesterone

Most of her life a woman is used to cyclical hormone changes between estrogen and progesterone. When a woman no longer ovulates in premenopause and menopause there is a surplus of estrogen and a lack of progesterone. Having no ovulation means that there is no corpus luteum developing, where in the past progesterone was made. This creates a disbalance where estrogen is dominating; it is called “estrogen dominance”.

This is a dangerous hormone disbalance, because the breast ducts are stimulated to grow and the modifying, calming effect of progesterone is missing. Mixed into this is that the stress hormone, cortisol also can make the effect of estrogen worse. On the other hand Dr. Zava showed slides from studies where progesterone was replaced through a skin progesterone cream (percutaneous bioidentical progesterone cream). Plasma and breast tissue concentration of progesterone were measured in 40 premenstrual women. They had been diagnosed with breast lumps and were scheduled for surgery. One group was treated with progesterone cream for 10 to 13 days; the other group was the placebo group. At the time of surgery the plasma (blood) values were unchanged, but progesterone levels in breast tissue were elevated more than 100-fold over the values from the placebo group who had been treated with a neutral skin cream. The same experiment also showed that progesterone reduced the number of proliferating epithelial cells (experimental progesterone group). Estrogen on the other hand was shown to increase the number of proliferating epithelial cells (placebo group).

Another example that Dr. Zava gave was a study where 25 mg of bioidentical progesterone cream applied directly to breasts of premenopausal women increased breast tissue progesterone 100-fold, while blood concentrations of progesterone remained the same. Again breast stimulation by estrogen of normal epithelium cells was decreased by progesterone.

How to measure progesterone levels

Dr. Zava who runs the ZRT laboratory spent some time to explain how to measure progesterone in a physiological way. He said that these experiments and others that he also projected tell a clear story. Blood (serum) progesterone levels do not adequately reflect what tissue levels in a woman’s breasts are. On the other hand saliva hormone levels do give an accurate account of what breast tissue levels are like. A woman received 30 mg of topical progesterone application. She then had hourly progesterone levels in the serum and in the saliva done. The serum progesterone levels remained at around 2 ng/ml, while the saliva progesterone levels peaked 3 to 5 hours after the application. It reached 16 ng/ml in saliva, which also represents the breast tissue progesterone level. Dr. Zava said that the important lesson to learn from this is not to trust blood progesterone levels. Too many physicians fall into this trap and order too much progesterone cream, which leads to overdosing progesterone. With salivary progesterone levels you see the physiological tissue levels, with blood tests you don’t. Dr. Zava said: avoid using venipuncture blood or urine in an attempt to interpret hormone test levels, as you will underestimate bio-potency and overdose the patient.

Historical failure of estrogen replacement therapy (ERT)

A review of breast cancer would not be complete without mentioning the Women’s Health Initiative (WHI). The U.S. National Institutes of Health (NIH) initiated this trial in 1991.

  1. The WHI ended suddenly in July 2002. The authors stated: “The overall health risks exceeded benefits from use of combined estrogen plus progestin for an average 5.2 year follow-up among healthy postmenopausal US women.” The study found a 41% increase in strokes, 29% increase in heart attacks, 26% increase in breast cancer, 22% increase in total cardiovascular disease, a doubling of blood clots. The recommendation made by this study was to discontinue PremPro.
  2. Another study that was mentioned was “Breast cancer and hormone-replacement therapy in the Million Women Study”.  In this study postmenopausal women were given HRT with synthetic hormones, either estrogen alone or estrogen mixed with a progestin (in British English “progestagen”. After 5 years estrogen alone was associated with a 30% increased risk of developing breast cancer. HRT with an estrogen-progestagen mix was associated with a 100% increased risk of developing breast cancer.
  3. Unfortunately in both of these human experiments the wrong hormone substances were used, namely synthetic estrogens and synthetic progestins. They are NOT identical with natural estrogens and progesterone that a woman’s body makes. As long as the hormones used for hormone replacement therapy are chemically identical to the natural hormones, the body will accept them as they fit the natural hormone receptors in the body. It is the misfit of synthetic hormones that blocks the estrogen receptors or the progesterone receptors. You can readily see from the illustrations of this link that there is a fine balance between the workings of these receptors and there is absolutely no room for patented side chains that Big Pharma introduced into synthetic HRT hormones. The other problem of both these studies was that every woman was getting the same dose of hormones and that nobody measured their estrogen blood or estrogen saliva hormone levels. In retrospect the regulatory agencies should never have allowed these “hormones” to hit the market.

Breast cancer develops in three stages

Dr. Zava explained that it has been known for some time that there are 3 stages involved in the development of breast cancer.

  1. Initiation

Damage to the DNA of one of the cells types in the breast is what starts the process in the development of breast cancer. This can be done by catechol estrogen-3,4-quinones as was shown by these researchers.

Aromatase inhibitors can be used to reduce estrogen in overweight or obese women where aromatase is present in fatty tissue. The reason obese women have more breast cancer is likely from the extra estrogen production from androgens, male hormones produced in the adrenal glands that get converted by aromatase into estrogen.

Iodine/iodide has been shown to alter gene expression, which reduces breast cancer development, but also slows down cell division in existing breast cancer. The authors suggested to use iodine/iodide supplements as adjuvant therapy in breast cancer treatment.

  1. Promotion

The next step is that something has to promote the DNA mutation into becoming part of a cancer cell. Estrogen quinones are dangerous estrogen metabolites. They can form from catechol estrogens (other metabolites of estrogen) by reactive oxygen species. But selenium, a trace mineral can interrupt the formation of estrogen quinones, which stops the breasts cancer promotion process. A study from the Klang Valley, Malaysia showed that selenium showed a dose-response effect with respect to prevention of breast cancer; the more selenium in the food, the less breast cancer occurred.

  1. Progression (includes invasion and metastases)

Several factors can help the breast cancer cells to progress, grow bigger locally and eventually move into other areas of the body as metastases. Dr. Zava showed several slides where details of metabolic processes were shown and how changes in some of these would lead to progression of breast cancer. Estrogen excess is a common pathway to breast cancer. The key is to balance it with progesterone, supplements, remove anything that causes estrogen overproduction like obesity (via the aromatase pathway).

The fallacy of overdosing or underdosing

When estrogen is overdosed, it becomes aggressive as indicated before; it can initiate DNA mutations that can cause breast cancer. If it is under dosed, the lack of estrogen can cause heart attacks, strokes and osteoporosis. When estrogen is balanced with progesterone a postmenopausal woman feels best and she is protected from the negative effects of estrogen.

Measures that help prevent breast cancer

  1. When supplementing with bioidentical hormones, keep estrogen within physiological limits and don’t overdose. This can be measured through blood tests or saliva hormone tests. Your most important natural opponent of estrogen is progesterone, which is usually missing in menopause. Measure hormones using tests (progesterone only with saliva tests, estrogen either by blood tests or saliva tests). Don’t rely going by symptoms.
  2. Keep the progesterone to estrogen ratio (Pg/E2) at an optimal range, which is in the 100- to 500-fold range. Measure the saliva hormone level of both progesterone and estrogen and calculate. Remember that progesterone serum levels are meaningless. The much higher progesterone level protects the postmenopausal woman from estrogen side effects. Here is a statement worth noting: “Until evidence is found to the contrary, bioidentical hormones remain the preferred method of HRT.” This was the conclusion of a study using bioidentical hormones, where the protection from breast cancer and heart attacks and strokes was also noted.
  3. Increase fiber intake and reduce red meat consumption. This will eliminate conjugated steroid hormones in the stool. It also increases the sex hormone binding globulin in the blood, which limits the bioavailability of estrogens. Fiber absorbs bile toxins and removes them from the body.
  4. Calcium-D-glucarate is a supplement that will decrease beta-glucuronidase. The estrogens were conjugated with the purpose to be eliminated, but beta-glucuronidase causes the conjugated estrogens to be reabsorbed.
  5. Probiotics likely stimulate the immune system and help reduce the risk of breast cancer.
  6. Avoid toxins like petrochemical pollutants and toxic chemicals. Avoid trans fats. If toxic, heavy metals are present (arsenic, cadmium, lead, mercury) remove these. Some naturopaths use EDTA chelation to do this.
  7. Supplements: sulforaphane (broccoli), EGCG (green tea), alpha-lipoic acid (antioxidant), cruciferous vegetables, resveratrol, selenium and iodide/iodine, N-acetyl cysteine-glutathione. All these supplements/nutrients will prevent estrogen to go to the “dark side”. The dark side is the formation of toxic 4-OH estrogen that could further be converted into catechol estrogen-3,4-quinones that can damage DNA and cause mutations.
  8. Increase methylation of catechol estrogens: vitamin B1, B6, B12 and folic acid. Methyl donors also are useful for this purpose: MSM (methylsulfonylmethane), SAMe, and Betaine.
  9. Improve your diet (Mediterranean type), exercise moderately, reduce stress, and replace hormones in physiological doses as discussed under point 1 and 2.
Breast Cancer Risks

Breast Cancer Risks

Conclusion

Dr. David Zava, PhD gave an interesting talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It became clear that estrogens, when unopposed by enough progesterone, could cause mutations in breast tissue of women and cause breast cancer. He also reviewed two major clinical trials where hormone replacement therapy (HRT) was used. The problems with these were the synthetic estrogen hormones that caused breast cancer and the synthetic progestins that also behaved like estrogens (not like progesterone) and caused even more breast cancer. The lesson to be learnt from this is that only bioidentical estrogens and progesterone can be used in hormone replacement for menopause. Also, the hormones must be balanced as discussed under point 2 of measures that help to prevent breast cancer. In addition there was a list of other useful supplements given that can be taken to reduce the danger of breast cancer.

Apr
01
2017

When Food Causes Inflammation

Dr. Hal Blatman gave a talk about when food causes inflammation. His talk was presented on Dec. 9 at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The original title was “Food, Pain and Dietary Effects of Inflammation”.

Dr. Blatman is the medical director of Blatman Health and Wellness Center, Cincinnati and Batman Medical Services, Manhattan.

General remarks about nutrition

Dr. Blatman pointed out that mistakes of nutrition are often behind chronic diseases and illnesses. The physician’s task is to explain to patients how their food intake can be changed to improve inflammation in the body and how the body can heal itself.

Hippocrates said 400 BC “Let food be thy medicine and medicine be thy food”.

In this context Dr. Blatman stated that nutrition could exacerbate symptoms or relieve symptoms and there must be rules for good nutrition. If we do not take care of our nutrition, the gut flora composition changes and causes leaky gut syndrome. But if we consume healthy foods all of this improves.

Mathematical formula for when food causes inflammation

To make it easier to understand the impact of food on our health the speaker offered this formula: G-B+R=P

G stands for good, beneficial things you can put into your body.

B = bad, toxic things that affect your body negatively.

R = reserves that your body has since birth (minus the amounts you have used up)

P = pain and problems you are going to experience

It is P (pain and other medical problems) what brings the patient to see the doctor. G and B is what the patient can change. When done right, the P value in the formula reduces and the pain or medical problems go away.

Nutritional rules

Dr. Blatman said there are three rules about nutrition.

Rule #1 is to not eat fake or toxic foods

He listed NutraSweet, Splenda, Saccharin, margarine and olestra.

  1. Aspartame experiments on rats showed that it can cause cancer: Dr. Blatman said that in man it has been shown to cause multiple myeloma and Hodgkin’s lymphoma. Aspartame worsens depression, 10% is metabolized in the liver into methanol, a nerve poison.
  2. Splenda (sucralose) is made from chlorinated sugar. It reduces beneficial microflora in the gut. It also interacts with liver enzymes that are known to interfere with the bioavailability of oral drugs.
  1. Saccharin alters gut bacteria and increases glucose tolerance.
  2. Hydrogenated fat and margarine. Insects don’t eat margarine, mold will not grow on it, and it will not support life. Merchants like it because food does not turn stale on shelves. Hydrogenated fats like margarine are considered to be poisons. They raise the bad LDL cholesterol levels and reduce beneficial HDL cholesterol levels. The prostaglandin balance changes so that inflammation occurs. There is increased evidence of diabetes and the cell membrane composition changes. Proinflammatory cytokines can cause pain in the dorsal root ganglions. It follows from all of this that it is best to cut out all hydrogenated fat and margarines.
  1. Partially hydrogenated vegetable oil. The cell membrane consists of two lipid layers at a specific ratio of omega-6 essential fatty acids and omega-3 essential fatty acids. It also contains triglycerides, phospholipids and protein. It is expected that the cell membrane absorb nutrients to move into the cell and eliminate waste out of it. The cell membrane needs to remain flexible and within neurons needs to transmit electrical information. The membrane composition is critical for the cell membranes to perform optimally. It is here that the physician has to explain this to the patient. All the fats we eat are the raw material, which will make up our cell membranes. So what fat we eat that day is built into the cell wall that is made that day or is repaired. If we eat hydrogenated fat that day, this is built into the cell wall.  A membrane with hydrogenated fat will:
  • Not transmit nutrients inside the cell
  • Will not transmit waste out
  • Causes the membrane to lose flexibility
  • In a nerve cell there will be abnormal neuron transmission

If we eat hydrogenated fat, we become like a “genuine GM truck fixed with inferior parts”, so Dr. Blatman. The interesting observation is that it takes 4 months after eliminating hydrogenated oil from the diet to get it out from red blood cells. Be aware that French fries increase pain for 4 months, so why eat them?

  1. Olestra, an artificial fat: Olestra has been developed as an artificial fat and is used in chips. It can cause diarrhea, abdominal cramps and weight gain with long-term use. Olestra belongs into the group of fake/toxic foods. Don’t eat Pringles or chips that are made with this.
  1. Healthy oils

There are two types of essential fatty acids, omega-6 fatty acids and omega-3 fatty acids. Many processed foods contain only omega-6 fatty acids, because this is the cheapest way to produce them (they are based on vegetable oils). Instead you want to eat healthy fats like omega-3 fatty acids contained in nuts and fish. You can also add molecularly distilled, high potency omega-3 fatty acids (purified fish oil) as a supplement to help restore the balance between omega-6 and omega-3 in your food intake. Avoid omega-6 fatty acids from corn oil, safflower oil, grape seed oil, soybean oil, cottonseed oil, canola oil and peanut oil.

Compare the metabolism of omega-6 fatty acids with that of omega-3 fatty acids.

The linoleic acid of omega-6 fatty acids gets metabolized into arachidonic acid, which causes pro-inflammatory mediators, PGE2 and LTB4. On the other hand with omega-3 fatty acids alpha-linolenic acid (ALA) is metabolized into EPA, DHA and the anti-inflammatory mediators PGE3 and LTB5.

It is easily understandable why a surplus of omega-6 fatty acids from processed foods will disbalance the omega-6 to omega-3 ratio. This ratio should be 1:1 to 3:1, but many Americans’ omega-6 to omega-3 ratio is 6:1 to 18:1. Omega-6-fatty acids cause arthritis, heart disease and strokes. Be particularly careful in avoiding soybean oil, which is the most popular oil in the last few decades to foul up the omega-6 to omega-3 ratio through processed foods.

When it comes to balancing omega-3 and omega-6 fatty acids in your diet, be aware that nutritional balancing can help you restore the ideal omega-6 to omega-3 ratio of 1:1 to 3:1. An easy way is to cut out processed foods as much as possible. Supplement with molecularly distilled fish oil capsules to add more omega-3 fatty acids into your food intake. Dr. Blatman gave the example of rheumatoid arthritis patients that were put on omega-3 supplements. After 24 weeks their joint swelling and tenderness went down.

Rebalancing the omega-6 to omega-3 ratio was able to treat depression as this research showed. This makes you wonder how much depression may be caused by overconsumption of processed food.

Dr. Blatman suggested the following doses of omega-3 supplementation for various purposes:

  • 1 gram/day as supplementation for healthy adults with a good diet
  • 1-3 grams/day for people with cardiovascular disease
  • 5-10 grams/day for patients with an autoimmune disease, with chronic pain or with neuropsychiatric conditions

He mentioned that these doses are empirical, but in his opinion definitely help. Due to quality differences he suggested that you buy fish oil capsules in a health food store where the quality is best. Stay away from discount stores (the quality is the worst) and drug stores.

Other healthy oils are olive oil and coconut oil. They are also useful for cooking.

Rule #2 is not to eat inflammatory foods

Our body functions like a luxury car; it needs pure food to function. Anything less leads to inflammation, particularly when you eat sugar and processed foods.

Inflammatory foods are sugar, white flour, fruit juice and white/red potatoes. A medium potato=1/2 cup of sugar! Other problematic foods are wheat grain contained in breads, pasta, cereal and thickeners in soups and sauces.

What is the problem with these foods? They break down the zonulin proteins that are a bridge between the lining cells of the gut.

This leads to an increase of intestinal permeability, and leaky gut syndrome can develop. Inflammatory cytokines from visceral fat add to the gut inflammation, and cardiovascular disease and high blood pressure can develop.

Fried potatoes, in particular the consumption of French fries, have been identified as the cause of inflammatory bowel disorder (IBD). Countries with the highest consumption of French fries have the highest incidence of IBD.

A Mediterranean diet and the DASH diet are anti-inflammatory diets.

Rule #3 is to not disturb the bowel flora

A healthy bowel flora is symbiotic with the body. You achieve this by eating green leafy vegetables. A toxic flora from dysbiotic microbes comes from eating white flour, white sugar and red meat. Red meat leaves residues on which dysbiotic bacteria thrive.

Symbiotic gut bacteria produce vitamin K, cobalamin, pyridoxine, biotin, riboflavin, pantothenic acid and short fatty acids. They also degrade metabolic toxins, prevent pathogens from colonization and they stimulate the immune system to mature.

Dysbiosis occurs when the wrong diet consisting of sodas, white flour, sugar and red meat is over consumed. There are toxins that are produced by the dysbiotic microbes. These injure the bowel wall and make the immune system work harder. Immune system dysfunction, fatigue and fibromyalgia can follow.

Dr. Blatman stated that gut dysbiosis that causes leaky gut syndrome could also cause ulcer disease, diabetes, heart disease, fibromyalgia, chronic fatigue syndrome, chronic pain and even cancer.

When Food Causes Inflammation

When Food Causes Inflammation

Conclusion

This was a whirlwind tour through a talk given by Dr. Blatman during the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. What food we eat determines what gut bacteria we harbor, symbiotic ones or toxic ones. This in turn determines which way our health develops. But the content of what we eat is also important. If we consume processed foods we end up consuming way too many omega-6 fatty acids, which cause inflammation, arthritis and heart disease. This is happening in front of our eyes, if we start seeing things the way they are. I was aware of this since the mid 1990’s. In a lecture I attended at a continuing education conference a cardiologist pointed out that inflammation was the determining factor of whether or not our patients would get a heart attack. The lecturer mentioned then that the older cholesterol concept would be replaced by the newer inflammation concept. He was right, but it goes even further! There is the important omega-6 to omega-3 ratio, and fish oil supplementation helps. At the same time it is necessary cutting out processed foods. But there is the newer insight that our bowel flora and red meat consumption can culture toxic bacteria in our own gut. It is in our power to start eating more vegetables and cut out sugar and starchy food. It is time to see chips and French fries not as a “convenience” but a hazard to your health. Food does not have to cause inflammation; right food choices will help us to stay well and live longer.

Mar
25
2017

How Stress Affects Our Hormone System

Dr. Andrew Heyman gave a talk recently about how stress affects our hormone system. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Understanding the Stress, Thyroid, Hormone Connections & Prioritizing Systems”.

Dr. Heyman stressed that there is a triad of hormonal connections that is important to remember: the thyroid hormones, the stress hormones (adrenal glands) and the pancreas (insulin production). We need a balance of these hormones for optimal energy production and circulation. Under stress our sugar metabolism can derail, we develop obesity and fatigue. When balanced we experience vitality and wellbeing.

Metabolic activation pathways

Dr. Heyman projected a slide that showed the metabolic activation pathways. He stated that a number of different factors could influence the hormone system:

  • Diet: trans fats, sugar, too many carbs, food allergies.
  • Drugs: drug-induced nutrient depletion (over-the-counter drugs, prescription drugs).
  • Physical exercise: frequency and type matters.
  • Environmental exposure: chemicals, pesticides, herbicides, heavy metals, plastics, molds, and pollens.
  • Stress: physical stress, psychogenic stress.
  • Genetics: methylene-tetra-hydro-folate reductase enzyme deficiency (MTHFR mutation), APOE genes, lack of vitamin D
  • Disease: past or present conditions, active disease or syndromes.

Target areas within your system

The target areas in your system are the

  • Pancreas, where blood sugar can rise because of insulin resistance. Too much insulin production causes inflammation, hormone disbalances, kidney damage, and hardening of the arteries through plaque formation.
  • Thyroid gland, which gets activated by TSH (thyroid stimulating hormone), but can also be affected negatively by autoantibodies).
  • Brain: decrease in serotonin resulting in anxiety, depression and food cravings; decreased melatonin causing sleep disturbances; increased ghrelin and decreased leptin secretion leading to overeating and obesity.
  • Liver/kidneys: both of these organs are important for detoxification; the liver produces thyroid binding globulin, which when increased can lower the free thyroid hormones.
  • Immune system (gut, lymph glands): the Peyer’s patches in the gut mucosa produce a large portion of the immune cells; lymph glands, the bone marrow and the spleen supply the rest. A leaky gut syndrome can affect the whole body, causing inflammation and autoimmune reactions.
  • Hypothalamus/pituitary/adrenal glands: this is the main axis of the stress reaction. If the brain is stressed, the hypothalamus sends a cascade of activating hormones via the pituitary gland and the adrenal glands. This leads to cortisol overproduction, and release of epinephrine and norepinephrine from the center of the adrenal glands. High blood pressure, anxiety, heart palpitations, arrhythmias and more can develop from this.

Hypothalamus/pituitary/adrenal glands activation and clinical effects

The main hormone axis of the stress reaction goes from the hypothalamus via the pituitary gland to the outside surface of the adrenal glands where cortisol is released. It is also called the HPA axis. Stressed people make too much cortisol, which weakens immune functions, reduces human growth hormone production, increases belly fat, increases blood pressure and reduces insulin action. Stress also reduces estrogen production in women and testosterone production in men.

The final clinical presentation is osteopenia, then osteoporosis with spontaneous fractures of bones. There is cardiovascular disease leading to heart attacks and strokes, and cognitive decline with memory loss. There are complications with infections. Also the metabolic syndrome can lead to obesity and type 2-diabetes.

Stress and the hippocampus

In the center of our brain there is a memory-processing unit, the hippocampus that converts short-term memory into long-term memory. Repeated stress interferes with normal hippocampus function. High cortisol levels interfere with the proper functioning of the hippocampus causing memory problems.

Chronically elevated cortisol levels from chronic stress have been shown to lead to hippocampus atrophy and can cause Alzheimer’s disease.

Effects of chronic stress

Chronic stress leads to cardiovascular disease, to diabetes, chronic inflammation, Alzheimer’s disease, thyroid disorders, cancer, neurological disorders and autoimmune diseases. Inflammation research has shown that with chronic inflammation tumor necrosis factor-alpha (TNF-alpha) is released, as key player of chronic inflammation. This however leads to the release of other inflammatory kinins like IL6 and others. The resulting chronic inflammation can cause Crohn’s disease, rheumatoid arthritis, insulin resistance, dementia, metabolic syndrome, obesity and atherosclerosis with associated markers (decreased HDL, increased LDL, CRP and triglycerides).

Hormone imbalance causes disease

  1. Excess cortisol production from stress leads to Th2 type inflammatory kinins; usually associated with this is a reduction of DHEA (a male hormone in the adrenal glands), which leads to reduced Th1 type kinins. The end result is chronic inflammation. When chronic stress has tired out the adrenal glands, a four-point salivary cortisol level test shows a flat curve. This indicates adrenal gland fatigue or, if worse, even adrenal gland insufficiency. Such a pattern is found in patients with leukemia, breast cancer, uterine cancer, prostate cancer, pituitary gland cancer and lung cancer.
  2. The metabolic syndrome is associated with dysregulation of the HPA axis. People who have this syndrome have a high morning serum cortisol level. High cortisol increases the risk to develop metabolic syndrome.
  3. Metabolic connections: high cortisol leads to a partial blockage of thyroid hormones, which in turn leads to hypothyroidism. Hypothyroidism will affect glucose tolerance, and if not treated leads to type 2 diabetes.

In a large study involving 46,578 members of Kaiser Permanente Northwest it was determined that for every 1 point above a fasting glucose level of 84 mg/dL there was an additional 6% risk to develop type 2 diabetes over the next 10 years.

Pathological hormone disturbances

The following hormone patterns were discussed in detail, an increased cortisol level, increased insulin level and decreased thyroid levels.

Elevated cortisol

Prolonged elevation of cortisol leads to atrophy of the hippocampus with brain atrophy and Alzheimer’s or dementia. The immune system gets altered, there is lower DHEA hormone leading to weaker muscles and weakened immunity. There is insulin resistance (decreased insulin sensitivity), decreased serotonin and increased depression. Carbohydrate cravings lead to weight gain (central obesity). Changes in the thyroid metabolism leads to hypothyroidism.

Increased insulin level

People who develop high insulin levels are usually sugar or carbohydrate addicts. As they gain weight they change their metabolism into the metabolic syndrome. The extra insulin that is floating around triggers the insulin receptors to become less sensitive (also called “resistant”). The people love to eat. They snack frequently on protein bars and candy bars. As they gain weight, their energy goes down and they often develop painful joints. This prevents them from being physically active. They notice episodes of foggy thinking. Women complain of frequent yeast infections.

The body tries to compensate by slightly decreasing thyroid hormones and slightly increasing cortisol levels.

Decreased thyroid levels

There is increased lactic acid production and decreased insulin sensitivity. Oxidative stress is increased. The patient is depressed and cognition and memory are reduced. The gut has slower motility. The mitochondria, the energy packages in each cell are reduced and functioning less productively. Cardiac function is reduced.

The body tries to compensate for the primary thyroid weakness by slightly elevating insulin and cortisol.

Treatment of stressed hormone system

Before the doctor can treat a disbalanced hormone system, blood tests have to be done that show what kind of hormone constellation is present. Dr. Heyman suggested the following support with supplements.

Treatment of thyroid disorders

Thyroid supplementation may involve any of these: Selenomethionine, iodine, chromium, thyroid glandular, tyrosine, ferritin, Ashwagandha, coleus forskohlii, 7-keto DHEA, ferritin and iron. Other possible supplements that were mentioned by Dr. Heyman were Rhodiola, schisandra, ginseng, Rg3, eurycoma longifolia, neuromedulla glandular, DHEA, tryptophan/5 HTP, licorice, Cordyceps.

This, however, is not all. Missing thyroid hormones have to be replaced with a balanced T3/T4 medication like Armour thyroid.

Adrenal support

The following supplements are used to support adrenals: Adrenal glandular, vitamin C, adrenal cortex extract, Holy Basil, Pharma GABA, Magnolia/Phellodendron, L-theanine, sterols & sterolins.

Pancreatic support

These supplements support the insulin production in the pancreas:

Chromium, vitamin D, magnesium, alpha-lipoic acid, fish oil, micro PQQ, bitter melon, cinnamon, arginine, vanadium, benfotiamine (synthetic derivative of B1 vitamin) and Bergamot.

Dr. Heyman completed his talk by giving a few patient examples, explaining what blood tests showed, what the hormone disbalance was, and which treatment options were helpful.

How Stress Affects Our Hormone System

How Stress Affects Our Hormone System

Conclusion

Dr. Andrew Heyman gave a talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. He talked about how stress affects our hormone system. Symptoms from stress can stem from different causes including hormone disbalances. Conventional medicine would simply treat the symptoms. However, this will not be successful with stress-induced hormone disbalances, because it does not treat the causes. Causal treatment of the hormone disbalance will restore the person’s wellbeing and the symptoms will disappear at the same time. Anti-aging medicine and integrative medicine are attempting to follow this approach.

Mar
18
2017

What’s new about testosterone?

Dr. Gary Huber recently gave a lecture on what’s new about testosterone. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. It was entitled “Evolution of Testosterone – Dispelling Myths & Charting a Future”.

History of testosterone

There are some notable historic landmarks with respect to the discovery of testosterone.

1869: Dr. Charles Brown-Sequard suggested that the “feebleness of older men” was due to a lack of testosterone. He injected himself with testicular extracts from dogs and guinea pigs.

1912: The Danish physician Dr. Thorkild Rovsing transplanted the testicles of a young soldier killed in battle into an old man with gangrene. The gangrenous wound healed completely.

1918: Dr. Leo Stanley sampled fresh testicles from executed prisoners at the San Quentin Prison and transplanted them to prison inmates. Some regained their sexual potency.

1930’s: Professor Adolf Butenandt collected 25,000 liters of urine from willing policemen. He was able to isolate a breakdown product of testosterone, androsterone. Eventually he isolated both progesterone and testosterone. He received the Nobel prize for his work with sex hormones in 1939.

Historical detours and misguided opinions about testosterone

1935: Because natural hormones cannot be patented, Big Pharma came up with the idea of modifying testosterone by adding a methyl group at the 17-alpha position of testosterone.

This allowed the new substance, 17 alpha-methyltestosterone to be swallowed as a pill. But the liver changed 17 alpha-methyl-testosterone into 17 alpha-methyl-estradiol, a strong estrogenic compound. This was not well metabolized. Shortly after introduction into patients it became evident that 17 alpha-methyl-testosterone caused liver cancers. This “testosterone equivalent” was used for 50 years until the FDA outlawed it because I caused liver cancer. It also caused suspicion among physicians about any testosterone replacement, even the bioidentical hormones that are safe.

Prostate cancer myths

Prostate cancer myth

Conventional medicine teaches (and I have believed this for many years) that testosterone would be the cause for prostate cancer. This was based on old observations by Dr. Huggins, a Canadian born surgeon who practiced in Chicago, that orchiectomy improved the survival of advanced prostate cancer patients a bit. Dr. Lee pointed out that Dr. Huggins neglected to realize that testicles make both testosterone and small amounts of estrogen. When an orchiectomy was done (because of the belief that testosterone production was the culprit) inadvertently the real cause of prostate cancer (an estrogen surplus) was also removed, thus improving the survival of these patients somewhat. Nowadays we have more sophisticated testing methods. Dr. Abraham Morgentaler (Ref. 1) has compiled a lot of evidence about the importance of testosterone in men. He proved, based on a lot of more modern references, that it is not testosterone that is the cause of prostate cancer. We know now that estrogen dominance is responsible for prostate cancer and that this develops as stated above because of the low testosterone and low progesterone during the male menopause (also called “andropause”).

It is important, when testosterone deficiency is present in an aging man, to replace the missing testosterone with bioidentical testosterone.

The old method of hormone depletion therapy in advanced prostate cancer cases is still practiced today, but has been proven wrong by Dr. Morgentaler and other researchers.

10% absorption rule myth

For years there has been a persistent myth that only 10% of testosterone would be absorbed through the skin. This was never proven, and newer studies could demonstrate that about 90% of testosterone gets absorbed through the skin.

Misleading science created myths

Unfortunately three key medical journals, JAMA, NEJM and PLOS ONE have published misleading studies. The content did not discuss physiology, mechanism of actions, appropriate dosing or true science. But their conclusions were that testosterone therapy was associated with heart attacks and strokes. There was an outcry about this particular study in the medical community reflected in the demand to retract this misleading article.

Unfortunately there were more similar false “studies” where controls were wrong or unequal groups were compared that should not have been compared. It is reminiscent of previous effort of the tobacco industry wanting to cover up that cigarette smoke causes lung cancer.

Here we have the problem that testosterone cures so many conditions for which the Pharma industry has many patented medicines that control the symptoms. But testosterone can actually treat the cause of the illness, testosterone deficiency, which leads to a cure of many other symptoms.

For a long time physicians were confused. But younger physicians are replacing the older generation and they treat testosterone deficiency with bioidentical testosterone in the proper dose.

Clinical observations about a lack of testosterone

There is evidence that men have lower testosterone as they age and this has worsened when we compare data from early 2000 to the 1980’s and 1990’s.

As this paper shows, men investigated in the 1980’s were still having higher testosterone levels in older age. But in the 1990’s and more so in 2004 these values have declined even more. This fact coincides also with other studies, showing decreased sperm health and increased infertility. The reason for this is also a lack of testosterone!

Causation of low testosterone

Dr. Huber pointed out that many studies have pointed to a variety of causes for low testosterone levels in men.

  • BPA, toxins and pesticides that occupy testosterone receptors and interfere with the hypothalamus/pituitary hormone function that stimulates the Leydig cells to produce testosterone.
  • The more stress men are under, the less testosterone production there is. Sleep deprivation below 5 hours per night leads to a significant lower testosterone production. Most testosterone is produced during the sleep in the early morning hours.
  • Weight gain and sugar overconsumption poison the testosterone producing Leydig cells.
  • Poly-pharmacy. Many drugs lower testosterone production: statins, diuretics, metformin, spironolactone, opiates, antidepressants, verapamil, alcohol, chemotherapy for cancer, antihistamines, ketoconazole, beta blockers, H2 blockers, finasteride, estrogens and alpha methyldopa.

Many references were provided that support these data. In one paper it was noted that the risk of a heart attack climbs to 4 times the risk of normal, when the man sleeps less than 6 hours per night. As sleep hours lower, the risk for metabolic syndrome increases by 42% and this leads to heart attacks. Testosterone replacement can reverse this risk as it a lack of testosterone production that caused the risk.

Link of low testosterone to cardiovascular disease

The literature is overwhelming that low testosterone has adverse effects on the cardiovascular system. To be more specific, the metabolic syndrome, heart disease (and strokes), diabetes and high blood pressure have their root in low testosterone.

Metabolic syndrome

Inflammation is mediated by cytokines such as IL-6. Dr. Huber mentioned one study where healthy men received IL-6. This promptly suppressed testosterone levels. He said that there are many cytokines that work in concert to suppress testosterone. One useful clinical test for inflammation is the C-reactive protein, which indicates whether or not inflammation is present in a person. Metabolic syndrome is common in obese patients. In a study CRP was found to be significantly associated with obesity. When CRP is high, testosterone levels are low. When the CRP level is high, there is a risk of getting the first heart attack.

On the other hand, when men with high inflammatory markers from low testosterone levels were replaced with testosterone, the tumor necrosis factor was reduced by 50%, IL1b by 37%, triglycerides by 11% and total cholesterol by 6%.

In the Moscow study a group of obese men with low testosterone levels were treated with testosterone injections. There was an impressive reduction of insulin (17%), CRP (35%) weight reduction of 4% and TNF-a reduction of 31% within 16 weeks.

Heart disease (and strokes)

Hardening of the arteries (medically called atherosclerosis) is due to chronic inflammation. A new heart attack/stroke specific biomarker has been developed. It is a ratio of oxidized LDL, divided by HDL. This has an odds ratio of 13.92 compared to a control without a risk for a heart attack or stroke.

Administration of testosterone hormone led to dilatation of coronary arteries. The Rotterdam study showed that low testosterone levels were associated with high risk for heart attacks and strokes, but that treatment with testosterone removed this risk. Testosterone increases AMP kinase for energy production in heart muscle cells, but also dilates coronary arteries for more blood supply to the heart.

Diabetes

Among men with diabetes 20-64% have low testosterone levels. In another study men with higher testosterone levels had a 42% lower diabetes risk. Testosterone levels are inversely related to body mass index and insulin resistance. Men with diabetes have lower testosterone levels than men who were not diabetic and were weight-matched. Most diabetics have high CRP values.

High blood pressure

Experience with androgen deprivation therapy for prostate cancer has shown that blood pressure gets elevated due to testosterone deficiency. Testosterone increases LDH, the protective subunit of cholesterol, and decreases LDL cholesterol and triglycerides. Testosterone also lowers inflammatory markers and reverses clotting factors making blood thinner. All of this leads to a widening of the arteries and lowering of blood pressure.

Treatment options for low testosterone

It is important to support the hypothalamic /pituitary/adrenal gland axis and remove other causes, such as stress and lack of sleep. Younger men can be stimulated in the pituitary gland through Clomiphene. Men older than 60 likely have true secondary hypogonadism and need testosterone replacement. Topical testosterone creams are available commercially or from compounding pharmacies. Injectable testosterone preparations that can be metabolized by the body are available. One such preparation is Delatestryl. A small dose (like 50 mg) is self-injected subcutaneously twice per week, which keeps the testosterone level stable. The last resort, if the creams or injections don’t work, is the use of testosterone pellets that a physician can implant under the skin.

What’s new about testosterone?

What’s new about testosterone?

Conclusion

At a recent Anti-Aging conference in Las Vegas that I attended, Dr. Huber gave an overview of testosterone. There has been an objective reduction of testosterone levels in men since the 1980’s due to pollutants in our environment. Testosterone plays a key role for heart and brain function. It affects sex drive, fertility and potency. But it also prevents diabetes, high blood pressure and weight gain. On top of that it prevents prostate cancer and likely many other cancers. The key with low testosterone is to replace it to high normal levels. Blood levels should be measured every two months, when replacement has been instituted, in order to ensure adequate levels.

References  Ref.1 Abraham Morgentaler, MD “Testosterone for Life – Recharge your vitality, sex drive, muscle mass and overall health”, McGraw-Hill, 2008

Mar
11
2017

Obesity And Diabetes Can Cause Cancer

Dr. Nalini Chilkov gave a talk about how obesity and diabetes can cause cancer. The original title was “Integrative Cancer Care, Increased Rates of Cancer and Cancer Mortality Associated with Obesity and Insulin Resistance, Nutraceutical and Botanical Interventions”. Her talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended.

In the following I will present a brief summary of her lecture.

Obesity is a major risk factor for cancer

Obesity causes 14% of all cancer deaths in men and 20% of cancer deaths in women.  This link explains this in more detail. The following 15 cancers were linked to obesity in terms of causation. They are: colon cancer, gastric cancer, gallbladder cancer, ovarian cancer, breast cancer, liver cancer, uterine cancer, endometrial cancer, rectal cancer, pancreatic cancer, cervical cancer, non-Hodgkin’s lymphoma, renal cancer, multiple myeloma and esophageal cancer.

The American Society of Clinical Oncology reported about a meta-analysis involving 82 studies. This involved more than 200,000 women with breast cancer. Premenopausal and postmenopausal women were compared who were obese or normal weight. Premenopausal, obese breast cancer women had a 75% increase in mortality compared to the normal weight breast cancer group. With postmenopausal, obese breast cancer women there was a 34% increase of mortality compared to the normal weight group.

With obese prostate cancer patients there is a similar observation. Obese patients have a more aggressive prostate cancer on the Gleason score and the cancer is in a more advanced stage at the time of diagnosis.

Diabetes increases mortality from cancer

Obesity is a common risk factor for both cancer and diabetes. But diabetes by itself is also increasing mortality of several cancers. In a consensus report details of the relationship between cancer and diabetes have been discussed in detail. The following cancers have been identified to have an increased risk of diabetes: pancreatic, gastric, esophageal, colorectal, liver, gallbladder, breast, ovarian, endometrial, cervical, urinary bladder, renal, multiple myeloma and non-Hodgkin’s lymphoma.

A meta-analysis suggests that cancer patients who are diabetic have a 1.41-fold increased risk of dying compared to those cancer patients who have normal blood sugars. Dr. Chilkov explained in detail what the various mechanism are that account for the faster cancer growth in obese and diabetic patients. High insulin levels is one of the risk factors, so is IGF-1, an insulin-like growth factor. The aromatase enzyme in fatty tissue turns male type hormones into estrogen, which also can stimulate cancer growth.

Carbohydrate restriction diet to prevent obesity

Low carb diets like the Mediterranean diet, the ketogenic diet and the Atkins diet will drop blood insulin and lactate levels. Cancer size and cancer growth are related to insulin and lactate levels. A low carb diet can reduce insulin-mediated uptake of sugar into cancer cells.

Research has shown that cancer metabolism slows down when a 10%-20% carb/high protein diet is consumed by the patient. This reduces the amount of sugar that is taken up by cancer cells. It also reduces insulin, so there is less cancer growth. A ketogenic diet is a more strict way to restrict carbohydrates. Intermittent fasting is also a useful method to reduce carbohydrate intake.

Here is an interesting study that illustrates the power of intermittent fasting. The study involved 2413 patients with early breast cancer who were followed for 7 years. Those breast cancer patients, who consistently did not eat anything between dinner and breakfast for 13 hours or more, had a 36% lower risk of having a cancer recurrence. There was also a 21% lower risk of dying from breast cancer when fasting was done for 13 hours or more overnight.

Supplements to prevent obesity, diabetes and cancer

A low carb diet and in some cases even a ketogenic diet is beneficial as a baseline. A regular exercise program is also useful for general fitness building and cardiovascular strengthening. In addition Dr. Chilkov recommended the following supplements.

  1. To reduce inflammation in the body, Dr. Chilkov recommended taking 2000 to 6000 mg of omega-3 fatty acids per day (molecularly distilled fish oil).
  2. Berberine 500 to 1000 mg three times daily. Dr. Chilkov said that Berberine has anti-cancer properties, improves insulin sensitivity and reduces absorption of sugars in the intestinal tract.
  3. Curcumin inhibits cancer cell division, invasion and metastatic spread through interaction with multiple cell signaling proteins. Several researchers showed that curcumin could lower blood sugar levels by stimulating insulin production from beta cells in the pancreas. Triglycerides, leptins and inflammation in fat cells are also lowered by curcumin. Insulin sensitivity increases through the action of curcumin. Dr. Chilkov recommended 300 mg/day of curcumin for 3 months.
  4. Resveratrol, the bioflavonoid from red wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol is 1000 to 5000 mg.
  5. Green tea catechins (EGCG) help to normalize the glucose and insulin metabolism. The dosage recommended was 1-3 grams per day.
  6. Reishi mushroom (Ganoderma lucidum) contain polysaccharides with antidiabetic and antiobesity effects. They make gut bacteria produce three types of short-chain fatty acids that control body weight and insulin sensitivity.
Obesity And Diabetes Can Cause Cancer

Obesity And Diabetes Can Cause Cancer

Conclusion

Obesity is a risk factor not only for diabetes, but also for cancer. Chronically elevated blood sugars, increased fasting insulin levels and increased IGF1 levels can cause cancer. In addition they can stimulate tumor growth and increase cancer mortality. It is for this reason that the health care provider should screen all diabetics for cancer. In her talk Dr. Nalini Chilkov gave clear guidelines what supplements will be beneficial to reduce the risk of obesity and diabetes as well as cancer. Start with a healthy, balanced diet. Add an exercise program. Then consider some of the above-mentioned supplements to reduce your risk for cancer, diabetes and obesity.

Mar
04
2017

Weight Loss Surgery Is Unnecessary

Dr. Flavio A. Cadegiani gave a talk saying that weight loss surgery is unnecessary. Dr. Cadegiani is the director of a weight loss clinic called Corpometria Institute in Brasilia, Brazil. He is board certified in endocrinology and metabolism and in internal medicine. His talk was presented at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended.

Here are the main topics that he presented.

Weight measurements are wrong when based on the BMI

Dr. Cadegiani stated that we do not understand obesity, because we look at it from the wrong angle. Current dietary approaches have failed. But obesity research is still proceeding in the wrong way. If all else fails, weight loss surgery is finally suggested as a last resort. But this is wrong.

The problem with body mass index (BMI) is that an athletic body type may be called “obese”, because the BMI exceeds 30.0. However in a very muscular person the reason for the elevated BMI is an increased muscles mass, not fat. Body composition scales reveal that, but a simple weight measurement does not.

Dr. Cadegiani recommended measuring waist circumference with <94 cm (37 inches) for men and <88 cm (34.65 inches) for women being normal.

10 reasons why we are misled by the BMI

  1. The inventor of the BMI was a mathematician. It was explicitly stated that the BMI would not predict the level of fatness of an individual. The other factors are bone mass and muscle mass.
  2. Because the BMI ignores the waist size, it is scientifically invalid.
  3. There are physiological reasons why it is wrong: there is no allowance made for the relative proportion of the bone, muscle and fat content.
  4. The BMI gets the logic wrong: the CDC site claims that the BMI “is a reliable indicator of body fatness for people”. This is simply not true!
  5. The BMI is based on bad mathematics: the formula assumes low muscle mass and high fat content.
  6. The BMI is lying by scientific authority: Dr. Cadegiani said it has an “air of scientific authority, but it is mathematical snake oil.”
  7. The BMI suggests that there are distinct categories of underweight, ideal, overweight and obese. It assumes sharp boundaries that hinge on a decimal place. All of this is nonsense.
  8. Cynical people could suspect that medical insurance companies lobby for the continued use of the BMI as it keeps their profits high. Sometimes insurance companies charge higher fees for people with an elevated BMI.
  9. Doctors can contribute to the continued use of the BMI, if they don’t feel the need to use another way of assessing their obese patients.
  10. It is embarrassing that we still base the assessment of obesity on a 200-year-old mathematical formula when more reliable measures are known.

Bariatric surgery done too easily

Dr. Cadegiani noted that publications on bariatric surgery (=weight loss surgery)

underreport surgical complications and deaths. The bariatric industry is rich, and 90% of the booths during obesity conferences belong to bariatric-related companies. Long-term follow-up studies are lacking. Those who do follow-ups report an increase of pancreatic tumors after 10 years following bariatric surgery.

Long-term follow-ups also describe a 70% increase of psychiatric disorders including depression and alcoholism. Those who had bariatric surgery experience a 200% increase in suicides.

Overcoming weight centered approach

Here is how to avoid the weight-centered approach that would lead the clinician to wrong conclusions.

There are four factors being taken into account:

  1. Metabolic blood markers are included in the assessment
  2. Body composition scales are used and incorporated in the assessment
  3. The patient participates by measuring waist circumference and body weight
  4. Clinical signs and symptoms are incorporated

Classic metabolic markers are liver enzymes and hormone levels like testosterone, Thyroid (T3) LH and IGF-1. The lipid metabolism is monitored through apoB and triglyceride levels. Inflammation is monitored through uric acid levels, ferritin and C-reactive protein (CRP). An oral glucose tolerance test and fasting insulin level can predict diabetes 5 to 10 years before it will occur clinically. Other metabolic markers are homocysteine and metalloproteinases. Insulin resistance can be measured with newer tests.

Oxidized LDLc is the only marker that is linked to diabetic retinopathy. Another marker, resistin is an independent marker for obesity-related cancer, cardiovascular disease and overall mortality. A triglyceride-waist circumference index has been found to be the best predictor for future development of diabetes.

Body composition analysis

The patient measures his/her own waist circumference and body weight on body composition scales. This gives additional information about fat and muscle composition. Dr. Cadegiani’s team likes to understand what is really going on in terms of what triggers fat excess.

Questions are: what is the level of emotional overeating? How much anxiety is there in the patient’s life that leads to overeating? What is the social and cultural environment? What were previous weight loss attempts? And what is the family history in term of excessive weight?

Other important factors are to check for binge eating disorders or night eating syndrome. In addition any patient planning to go for weight loss therapy should be checked for depression, mood disorders and suicide potential.

Otherwise body composition scales by electrical bioimpedance were found to be very useful in assessing fat and muscle percentage as well as visceral fat percentage.

Aggressive clinical approach improves metabolism

Dr. Cadegiani and his group have published their own research paper in February 2017 showing that an aggressive clinical approach can prevent the need for bariatric surgery.  This publication describes that in a group of 43 subjects who were thought to be bariatric surgery candidates only 3 patients (7%) went on to have the procedure done. 93% of the subjects were able to shed pounds with the method offered and avoided bariatric surgery.

They documented that clinical parameters and blood tests all improved on their program. The researchers focused on triggers that caused obesity in their patients. The measured markers were oxidized LDL cholesterol, triglycerides, the liver enzymes ALT and μGT, fasting glucose, Hemoglobin A1C, uric acid and CRP. All of these parameters improved with the modification in food intake. 81.2% of the weight loss was from the reduction of fat mass. 46.5% of patients had a normal waist circumference measurement at the end of the trial. They also achieved normal body fat and visceral fat percentages. As already stated 93% of all the patients in this trial avoided weight loss surgery, called bariatric surgery.

Dr. Cadegiani suggested that obesity should be approached with a scientifically based and responsible method. This will change the way we manage obesity.

Weight Loss Surgery Is Unnecessary

Weight Loss Surgery Is Unnecessary

Conclusion

Attention to detail of the patient with weight problems will allow the patient to reduce fat percentage. Waist measurements should be regularly performed as well as body composition scales measurements. This way the physician can follow the fat and muscle percentages. Key to success is to reduce the refined carb contents of food intake (sugar and starchy foods) and have a calorie deficit diet. Exercise is also an important component. An aggressive clinical approach to obesity can improve the clinical outcome and can prevent bariatric surgery.

Feb
25
2017

Heart Health Improves With Hormone Replacement

Dr. Pamela Smith gave a lecture in December 2016 showing that heart health improves with hormone replacement. Her talk was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9 to Dec. 11, 2016) in Las Vegas, which I attended. The title of the talk was: “Heart health: The Importance of Hormonal Balance for Men and Women”. Her keynote lecture contained 255 slides. I am only presenting a factual summary of the pertinent points here.

1. Estrogen

Observations regarding risk of heart attacks

  1. Women have a lower risk of heart attacks before menopause compared to men of the same age.
  2. Heart attack rates go up significantly after menopause.
  3. Estrogen replacement therapy may reduce the risk of heart attacks by 50% for postmenopausal women.

Lipid profile after menopause

There is an elevation of LDL cholesterol, total cholesterol and triglycerides as well as lower HDL cholesterol levels. All of this causes a higher risk of heart attacks for postmenopausal women. Estrogen replacement therapy increases the large VLDL particles, decreases LDL levels and raises HDL-2. These changes are thought to be responsible for helping reduce heart attack rates in postmenopausal women who do estrogen replacement therapy (ERT).

Difference between oral and transdermal estrogen replacement

When estrogen is taken by mouth, it is metabolically changed in the liver. This reduces the protective effect on the cardiovascular system. In contrast, transdermal estrogen (from commercial estrogen patches or from bioidentical estrogen creams) has a higher cardioprotective effect. The liver does not metabolize transdermal estrogen. Dr. Smith explained in great detail using many slides how estrogen prevents heart attacks. Details about this would be too technical for this review. Apart from lipid lowering effects there are protective effects to the lining of the arteries. In addition there are metabolic processes in heart cells and mitochondria that benefit from estrogens. The end result is that postmenopausal women who replace estrogen will outlive men by about 10 years. Stay away from Premarin, which is not human estrogen, but is derived from pregnant mares. Also the tablet form is metabolized by the liver, which loses a lot of the beneficial effects that you get from transdermal estrogen. 

How can you document the beneficial effects of estrogen replacement?

  1. Carotid intima measurements in postmenopausal women on ERT show a consistent reduction in thickness compared to controls.
  2. The physical and emotional stress response is reduced compared to postmenopausal women without ERT.
  3. Hormone replacement therapy in postmenopausal women reduces blood pressure. Measurements showed this effect to be due to a reduction of angiotensin converting enzyme (ACE) by 20%. This is the equivalent of treating a woman with an ACE inhibitor without the side effects of these pills.
  4. Coronary calcification scores were lower in postmenopausal women on ERT than a control group without ERT. These calcification scores correlate with the risk for heart attacks.
  5. Oral estrogen replacement leads to proinflammatory metabolites from the liver metabolism of estrogen. This is not found in the blood of women using transdermal estrogen. The anti-inflammatory effect of transdermal estrogen is another mechanism that prevents heart attacks.
  6. Postmenopausal women on ERT had no increased risk of heart attacks or venous thromboembolism (clots in veins). Menopausal women without ERT have a risk of 40% of dying from a heart attack. Their risk of developing breast cancer is 5.5%, the risk of dying from breast cancer is about 1%. Oral estrogen use was associated with venous thromboembolism.
  7. Estrogen has antiarrhythmic effects stabilizing the heart rhythm. Dr. Smith said that in the future intravenous estrogen might be used to prevent serious arrhythmias following heart attacks.

Estrogen levels in males

Males require a small amount of estrogens to maintain their memory, for bone maturation and regulation of bone resorption. But they also need small amounts of estrogen for their normal lipid metabolism.

However, if the estrogen levels are too high as is the case in an obese, elderly man, there is an increased risk of heart disease. Factors that lead to increased estrogen levels in an older man are: increased aromatase activity in fatty tissue, overuse of alcohol and a change in liver metabolism, zinc deficiency, ingestion of estrogen-containing foods and environmental estrogens (also called xenoestrogens).

2. Progesterone

Progesterone is significantly different from the progestin medroxyprogesterone (MPA). MPA was the oral progestin that was responsible for heart attacks and blood clots in the Women’s Health Initiative. MPA increases smooth muscle cell proliferation. This in turn causes hardening of the coronary arteries. In contrast, progesterone inhibits smooth muscle cell proliferation, which prevents heart attacks. Progesterone also lowers blood pressure and elevates HDL cholesterol, but MPA does not.

Progesterone in males

In a small study Depo-Provera was given to males for 17 days. Blood tests showed a lowering of triglycerides, LDL cholesterol and Apo A-1.

3. Testosterone

Testosterone replacement in women

Testosterone in women does not only increase their sex drive, but also relaxes the coronary arteries in women who were testosterone deficient. This allows more blood flow to the heart. In postmenopausal women testosterone replacement lowered lipoprotein (a) levels up to 65%. The physician will only replace testosterone in women who have either enough of their own estrogen production or else have been replaced first with bioidentical estrogen. Otherwise testosterone alone can cause heart attacks in women.

Elevated testosterone in women with PCOS

Women with polycystic ovary syndrome (PCOS) can have increased testosterone levels when they go through premenopause or menopause.

Women with PCOS are at a higher risk to develop diabetes, heart disease and high blood pressure. 50% of women with PCOS have insulin resistance. 70% of women with PCOS in the US have lipid abnormalities in their blood.

Elevated testosterone levels in the blood can lower the protective HDL cholesterol and increase homocysteine levels. Both can cause heart attacks.

Women with PCOS have a 4-fold risk of developing high blood pressure.

Testosterone replacement in males

A 2010 study showed that low testosterone levels in males were predictive of higher mortality due to heart attacks and cancer. Low testosterone is also associated with high blood pressure, heart failure and increased risk of cardiovascular deaths. There was a higher incidence of deaths from heart attacks when testosterone levels were low compared to men with normal testosterone levels.

Low testosterone is also associated with the development of diabetes and metabolic syndrome, which can cause heart attacks.

It is important that men with low testosterone get testosterone replacement therapy.

DHT (Dihydrotestosterone)

DHT is much more potent than testosterone. Conversion of testosterone leads to DHT via the enzyme 5-alpha-reductase. While testosterone can be aromatized into estrogen, DHT cannot. Some men have elevated levels of DHT. This leads to a risk of heart attacks, prostate enlargement and hair loss of the scalp.

Andropause treatment

Only about 5% of men in andropause with low testosterone levels receive testosterone replacement in the US. Part of this is explained by rumors that testosterone may cause prostate cancer or liver cancer. The patient or the physician may be reluctant to treat with testosterone. Bioidentical testosterone has been shown to not cause any harm. It is safe to use testosterone cream transdermally. It does not cause prostate cancer or benign prostatic hypertrophy.

An increase of 6-nmol/L-serum testosterone was associated with a 19% drop in all-cause mortality.

Testosterone helps build up new blood vessels after a heart attack. Testosterone replacement increases coronary blood flow in patients with coronary artery disease. Another effect of testosterone is the decrease of inflammation. Inflammation is an important component of cardiovascular disease.

Testosterone replacement improves exercise capacity, insulin resistance and muscle performance (including the heart muscle).

Apart from the beneficial effect of testosterone on the heart it is also beneficial for the brain. Testosterone treatment prevents Alzheimer’s disease in older men by preventing beta amyloid precursor protein production.

4. DHEA

Dehydroepiandrosterone (DHEA) is a hormone produced in the adrenal glands. It is a precursor for male and female sex hormones, but has actions on its own. It supports muscle strength. Postmenopausal women had a higher mortality from heart disease when their DHEA blood levels were low.

Similar studies in men showed the same results. Congestive heart failure patients of both sexes had more severe disease the lower the DHEA levels were. Other studies have used DHEA supplementation in heart patients, congestive heart failure patients and patients with diabetes to show that clinical symptoms improved.

5. Melatonin

Low levels of melatonin have been demonstrated in patients with heart disease. Melatonin inhibits platelet aggregation and suppresses nighttime sympathetic activity (epinephrine and norepinephrine). Sympathetic activity damages the lining of coronary arteries. Melatonin reduces hypoxia in patients with ischemic stroke or ischemic heart disease. Lower nocturnal melatonin levels are associated with higher adverse effects following a heart attack. Among these are recurrent heart attacks, congestive heart failure or death. Melatonin widens blood vessels, is a free radical scavenger and inhibits oxidation of LDL cholesterol. Melatonin reduces inflammation following a heart attack. This can be measured using the C-reactive protein.

In patients who had angioplasties done for blocked coronary arteries intravenous melatonin decreased CRP, reduced tissue damage, decreased various irregular heart beat patterns and allowed damaged heart tissue to recover.

6. Thyroid hormones

It has been known for more than 100 years that dysfunction of the thyroid leads to heart disease. Hypothyroidism can cause heart attacks, hardening of the coronary arteries and congestive heart failure. Lesser-known connections to hypothyroidism are congestive heart failure, depression, fibromyalgia, ankylosing spondylitis and insulin resistance. Some cases of attention deficit hyperactivity disorder (ADHD) with low thyroid levels may successfully respond to thyroid replacement.

Thyroid hormones improve lipids in the blood, improve arterial stiffness and improve cardiac remodeling following a heart attack. Thyroid hormones help with the repair of the injured heart muscle. They also work directly on the heart muscle helping it to contract more efficiently. Lower thyroid stimulating hormone (TSH) values and higher T3 and T4 thyroid hormone levels lead to improved insulin sensitivity, higher HDL values (= protective cholesterol) and overall better functioning of the lining of the arteries.

Dr. Smith said that thyroid replacement should achieve that

  • TSH is below 2.0, but above the lower limit of normal
  • Free T3 should be dead center of normal or slightly above
  • Free T4 should be dead center of normal or slightly above

Most patients with hypothyroidism require replacement of both T3 and T4 (like with the use of Armour thyroid pills).

7. Cortisol

Cortisol is the only human hormone that increases with age. All other hormones drop off to lower values with age. The adrenal glands manufacture cortisol. With stress cortisol is rising, but when stress is over, it is supposed to come down to normal levels. Many people today are constantly overstressed, so their adrenal glands are often chronically over stimulated. This can lead to a lack of progesterone. It also causes a lack of functional thyroid hormones as they get bound and are less active. When women have decreased estradiol in menopause there is a decline in norepinephrine production, production of serotonin, dopamine and acetylcholine. Women with this experience depression, lack of drive and slower thought processes.

Heart Health Improves With Hormone Replacement

Heart Health Improves With Hormone Replacement

Conclusion

Seven major hormones have been reviewed here that all have a bearing on the risk of developing a heart attack. It is important that these hormones are balanced, so they can work with each other. Hormones can be compared to a team that works together and is responsible for our health. If one or several of the team players are ineffective, our health will suffer. For this reason hormone replacement is crucial. Hormones have effects on mitochondria of the heart muscles cells. They stabilize the heart rhythm as in the case of estradiol. But they can also strengthen the heart muscle directly through DHEA and estrogens in women and DHEA and testosterone in men. Thyroid hormones are another supportive force for the heart and can even be used therapeutically in chronic heart failure patients. When people age, many hormones are produced less, but blood tests will show this. Replacing hormones that are missing can add years of active life.

Taking care of the symphony of hormones means you are taking care of your most important organ, the heart!

Feb
18
2017

Weight Gain In Menopause

Dr. Tasneem Bhatia, also known as Dr. Taz gave a lecture about weight gain in menopause. This was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The full title of the talk was “Hormone Balance and Weight Control in Menopausal Women”. Dr. Taz practices integrative medicine at CentreSpring MD, Atlanta. GA.

A few statistics about menopause

Weight gain in menopause is common. There are 50 million women who suffer from this in the US. Globally 300 million women have this problem. The average weight gain is between 5 and 50 pounds. There may be a small percentage of women where a genetic component comes in, and where all the females in the ancestry had a weight problem after menopause. But we do not know for certain what is genetic and what is due to hormone deficiency. It is only in the last few decades that doctors have determined how important hormone deficiencies are in menopause.

It has been determined that 10 million women who are over 40-years-old need treatment in long-term care facilities.

We will see below that when this knowledge is incorporated into a treatment schedule, the weight problem can normalize. In this case 2/3 of the cost of caring for postmenopausal women with obesity and diabetes can be reduced.

Pathophysiological changes in menopause

There are three intertwining aspects that drive weight gain in menopause. There is an altered metabolic rate, and less calories are burnt, which makes you gain weight when you eat the same amount of calories. Secondly there is a significant decline of three key hormones, estrogens, progesterone and thyroid hormones in menopause. Third, as the weight rises and the other mentioned hormones are missing, it is harder for the pancreas to keep up with insulin production and insulin resistance is developing. I will explain this further below.

1. Decreased energy expenditure

With the lack of the ovarian hormones there is a slowing of the resting metabolic rate. There is also decreased energy expenditure from reduced fat oxidation. Overall there is less need to consume the same amount of calories as before. But the hormonal changes trigger hunger and cravings.

2. Ovarian aging

With ovarian aging there is less estrogen production in the ovaries. This leads to less ovulation in the premenopausal period. A lack of ovulations creates a lack of progesterone production. When there are anovulatory cycles, there is no progesterone producing corpus luteum reducing progesterone production further. When estrogen and progesterone are missing, this is a stress on the thyroid gland that is trying to partially compensate for the lack of the ovarian hormones. Eventually though thyroid hormone production is reduced and hypothyroidism sets in. This is very hard on the adrenal glands that produce cortisol. For some time the adrenal glands can compensate for missing thyroid hormones with cortisol overproduction. But in time adrenal gland fatigue develops.

3. Insulin resistance

Insulin resistance can lead to diabetes, which becomes a real menace together with the metabolic changes of obesity.

Health risks of weight gain

Dr. Taz pointed out that there are very specific risks associated with the metabolic changes around menopause. There is an increased risk for heart attacks and strokes as LDL cholesterol and triglycerides are elevated and arteries get calcified from circulating calcium that was leaked out from the bones into the blood stream.

Osteoporosis is common in menopause; the brittle bones lead to an increased risk of fractures in the hips, wrists and vertebral bodies.

There is also increased risk of cancer in postmenopausal women, particularly breast cancer and colon cancer. The higher the weight, the more risky it is for these women to get one of these cancers.

Alzheimer’s disease and cognitive decline is also very common in menopause. This may be directly related to a lack of estrogen and progesterone, but may also have to do with overconsumption of sugar and starchy foods.

Hormone changes in menopause

Hormone changes in menopause can be complex. It is not only a lack of estrogens and progesterone that are the problem. All hormones work together. When there is weakness in one area (in the ovaries with menopause), those hormones that are acting in the same way or in opposition to ovarian hormones will be affected. In this way it is understandable that the thyroid gland can develop a weakness (hypothyroidism) or why the adrenal glands are over stimulated first, but will eventually suffer with adrenal fatigue in future. In a similar way the pancreas produces too much insulin, partially because weight gain stimulates this. Typically the physician finds the fasting insulin level elevated with menopausal obesity. But as insulin levels are too high, the body’s insulin receptors get lazy and do not respond fully to insulin anymore. This is called insulin resistance. In time insulin resistance can lead to diabetes.

1. Lack of estrogen

A lack of estrogen in menopause is likely the single most important reason for weight gain in menopause.  As estrogen secretion declines, visceral obesity increases. There is also impaired insulin regulation. With obesity there is an additional risk of developing diabetes.

2. Progesterone

Progesterone is the other female hormone that is reduced with menopause. Bioidentical progesterone cream can prevent osteoporosis and hot flashes in menopause. Bioidentical progesterone replacement can also help a menopausal woman to sleep better. In menopause the production of progesterone goes down by 75% while estrogen production drops down by 35%.

3. Hypothyroidism

Hypothyroidism (with elevated TSH blood tests) is commonly found in menopausal women. This is known to be associated with weight gain. As a result it is important to check for hypothyroidism in menopausal women. It is important to check for micronutrients like iodine, selenium and iron and if they are low, supplementation may be necessary. Some women develop an inflammatory thyroiditis, called Hashimoto’s disease. This can be confirmed with a thyroid nuclear scan. The reason this is important to recognize is that after several years when it burns itself out, hypothyroidism develops often, which requires thyroid hormone replacement.

4. Cortisol response

The cortisol response to stress is suboptimal due to the decreased progesterone levels in menopause. Adequate amounts of progesterone are needed to synthesize cortisol. But in a group of menopausal women following a significant stressful event cortisol production was much higher than in non-stressed women.

5. Other hormones

Other hormones like leptins and melatonin are also contributing to weight gain in menopause. In rat experiments where ovariectomies (mimicking menopause) were performed, there was a clear relationship between low estrogen levels and weight gain; higher estradiol doses inhibited leptin expression resulting in weight normalization.

Leptin and melatonin are influencing insulin regulation. This can in time lead to diabetes in connection with weight gain. It is at this point when a woman’s body shape can turn from a healthier pear shape to an unhealthy apple shape. The extra visceral (abdominal) fat is very active metabolically and causes inflammation in the body. These changes can lead to high blood pressure, heart attacks, strokes and digestive dysfunction.

Treatment of weight gain in menopause: food, hormones and lifestyle

How do you treat a complex problem like weight gain in menopause? It is no surprise that this will require a number of treatment modalities in combination.

1. Diet

It is important to start on an anti-inflammatory diet like the Mediterranean diet. Any extra sugar should be cut out as surplus carbohydrates lead to fat deposits and higher blood lipids. Dr. Taz suggested a 1200-calorie diet. Reduce salt intake. Eat more food during the day until 4 PM, nothing to eat after 8 PM. Increase plant-based foods, lower or eliminate trans fats. Increase foods rich in probiotics (bifidobacteria) like kefir, yogurt and kombucha.

2. Exercise 

Do some exercise in a gym where you combine a treadmill for 30 minutes with 25 minutes of weight machines for strength training. Aim for doing this 5 times per week. But it would be more beneficial doing it every day. Have additional activity bursts on and off during the day. Exercise has been shown to increase HDL cholesterol, which protects from heart attacks and strokes.

3. Stress management

Supplements like adaptogens help the adrenal gland to better cope with stress. These are available through your health food store. Meditation, yoga, self-hypnosis will all help to refocus and protect you from stress. B-complex vitamins and vitamin C strengthen your immune system and give you more energy. Building and maintaining community is another factor in reducing stress.

4. Establishing healthy sleep

Many postmenopausal women have poor sleep habits, partially from hot flashes (due to estrogen deficiency), partially from melatonin deficiency and also from progesterone deficiency. In the next section I will describe how to normalize these hormones. But in addition you need to educate yourself to go to bed between 10 PM and 11 PM every night and to sleep 7 to 8 hours. If you go to bed later, you will disturb your diurnal hormone rhythm and this will interfere with a normal sleep pattern. There is an age-related reduction of melatonin production in the pineal gland. This is why many postmenopausal women are deficient in melatonin. You may need 3 mg of melatonin at bedtime. If you wake up in the middle of the night you could take another 3 mg of melatonin. You may experience a few nightmares as a side effect; otherwise melatonin is very well tolerated.

5. Bioidentical hormone replacement

The complex hormone deficiencies described above are responsible for the many symptoms of menopausal women including weight gain. It is important to work with a knowledgeable health care provider who knows how to prescribe bioidentical hormones. Typically blood tests and possible saliva hormone tests are done before replacement. This establishes which hormones have to be replaced. Typically bioidentical progesterone is replaced first. Secondly, estrogen is added as Bi-Est cream, if blood levels indicate that it is low. If thyroid is required because of a high TSH level (meaning hypothyroidism) supplementation with Armour or a similar balanced T3/T4 combination is started. If fasting insulin levels are high, the doctor may want to start metformin as this is known to normalize insulin resistance. Blood tests have to be repeated from time to time to ensure adequate hormone levels.

6. Supplements

Every woman treated will likely require different supplements. But magnesium is one mineral that is often missing in the diet. 250 mg of magnesium twice a day will be enough for most women and men to balance internal metabolic reactions. Magnesium is a co-factor to many enzyme systems. Vitamin K2 (200 micrograms daily) and vitamin D3 (around 4000 to 5000 IU per day) in combination are important to prevent osteoporosis. Apart from these there are many options to take other supplements. Ask your healthcare provider what you should take.

Weight Gain In Menopause

Weight Gain In Menopause

Conclusion

This was a fast review of what Dr. Taz explained in a talk about weight gain in menopause. There are complex hormone changes that need to be addressed. A well-balanced diet like the Mediterranean diet needs to be followed. Stress management skills need to be learnt. A regular exercise routine needs to be followed. Healthy sleep patterns have to be reestablished. And missing hormones need to be replaced not in synthetic forms, which are toxic to the body, but in the bioidentical forms. Postmenopausal women will feel better when this comprehensive treatment program is in place; and in time they will feel normal again.