Mar
11
2017

Obesity And Diabetes Can Cause Cancer

Dr. Nalini Chilkov gave a talk about how obesity and diabetes can cause cancer. The original title was “Integrative Cancer Care, Increased Rates of Cancer and Cancer Mortality Associated with Obesity and Insulin Resistance, Nutraceutical and Botanical Interventions”. She presented her talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended.

In the following I will present a brief summary of her lecture.

Obesity is a major risk factor for cancer

Obesity causes 14% of all cancer deaths in men and 20% of cancer deaths in women.  This link explains this in more detail. The following 15 cancers related to obesity in terms of causation. They are: colon cancer, gastric cancer, gallbladder cancer, ovarian cancer, breast cancer, liver cancer, uterine cancer, endometrial cancer, rectal cancer, pancreatic cancer, cervical cancer, non-Hodgkin’s lymphoma, renal cancer, multiple myeloma and esophageal cancer.

The American Society of Clinical Oncology reported about a meta-analysis involving 82 studies. This involved more than 200,000 women with breast cancer. The researchers compared premenopausal and postmenopausal women who were obese or normal weight. Premenopausal, obese breast cancer women had a 75% increase in mortality compared to the normal weight breast cancer group. In comparison with the normal weight group the postmenopausal group of obese breast cancer women showed a 34% increase of mortality.

With obese prostate cancer patients there is a similar observation. Obese patients have a more aggressive prostate cancer on the Gleason score and the cancer is in a more advanced stage at the time of diagnosis.

Diabetes increases mortality from cancer

Obesity is a common risk factor for both cancer and diabetes. But diabetes by itself is also increasing mortality of several cancers. In a consensus report details of the relationship between cancer and diabetes have been discussed in detail. The following cancers have been identified to have an increased risk of diabetes: pancreatic, gastric, esophageal, colorectal, liver, gallbladder, breast, ovarian, endometrial, cervical, urinary bladder, renal, multiple myeloma and non-Hodgkin’s lymphoma.

A meta-analysis suggests that cancer patients who are diabetic have a 1.41-fold increased risk of dying compared to those cancer patients who have normal blood sugars. Dr. Chilkov explained in detail what the various mechanism are that account for the faster cancer growth in obese and diabetic patients. High insulin levels is one of the risk factors, so is IGF-1, an insulin-like growth factor. The aromatase enzyme in fatty tissue turns male type hormones into estrogen, which also can stimulate cancer growth.

Carbohydrate restriction diet to prevent obesity

Low carb diets like the Mediterranean diet, the ketogenic diet and the Atkins diet will drop blood insulin and lactate levels. Cancer size and cancer growth are related to insulin and lactate levels. A low carb diet can reduce insulin-mediated uptake of sugar into cancer cells.

Research has shown that cancer metabolism slows down when a 10%-20% carb/high protein diet is consumed by the patient. This reduces the amount of sugar that is taken up by cancer cells. It also reduces insulin, so there is less cancer growth. A ketogenic diet is a more strict way to restrict carbohydrates. Intermittent fasting is also a useful method to reduce carbohydrate intake.

Here is an interesting study that illustrates the power of intermittent fasting. The study involved 2413 patients with early breast cancer who were followed for 7 years. Those breast cancer patients, who consistently did not eat anything between dinner and breakfast for 13 hours or more, had a 36% lower risk of having a cancer recurrence. There was also a 21% lower risk of dying from breast cancer when fasting was done for 13 hours or more overnight.

Supplements to prevent obesity, diabetes and cancer

A low carb diet and in some cases even a ketogenic diet is beneficial as a baseline. A regular exercise program is also useful for general fitness building and cardiovascular strengthening. In addition Dr. Chilkov recommended the following supplements.

  1. To reduce inflammation in the body, Dr. Chilkov recommended taking 2000 to 6000 mg of omega-3 fatty acids per day (molecularly distilled fish oil).
  2. Berberine 500 to 1000 mg three times daily. Dr. Chilkov said that Berberine has anti-cancer properties, improves insulin sensitivity and reduces absorption of sugars in the intestinal tract.
  3. Curcumin inhibits cancer cell division, invasion and metastatic spread through interaction with multiple cell signalling proteins. Several researchers showed that curcumin could lower blood sugar levels by stimulating insulin production from beta cells in the pancreas. Triglycerides, leptins and inflammation in fat cells are also lowered by curcumin. Insulin sensitivity increases through the action of curcumin. Dr. Chilkov recommended 300 mg/day of curcumin for 3 months.
  4. Resveratrol, the bioflavonoid from red wine is a powerful anti-inflammatory. This antioxidant has several other effects, which make it challenging to measure each effect by itself. This group of investigators managed to simultaneously measure these effects. They found that resveratrol lowered the C-reactive protein by 26% and tumor necrosis factor-alpha by 19.8%. Resveratrol also decreased fasting blood sugar and insulin; in addition it reduced hemoglobin A1C and insulin resistance. The recommended daily dose of resveratrol is 1000 to 5000 mg.
  5. Green tea catechins (EGCG) help to normalize the glucose and insulin metabolism. The dosage recommended was 1-3 grams per day.
  6. Reishi mushroom (Ganoderma lucidum) contain polysaccharides with antidiabetic and antiobesity effects. They make gut bacteria produce three types of short-chain fatty acids that control body weight and insulin sensitivity.
Obesity And Diabetes Can Cause Cancer

Obesity And Diabetes Can Cause Cancer

Conclusion

Obesity is a risk factor not only for diabetes, but also for cancer. Chronically elevated blood sugars, increased fasting insulin levels and increased IGF1 levels can cause cancer. In addition they can stimulate tumor growth and increase cancer mortality. It is for this reason that the health care provider should screen all diabetics for cancer. In her talk Dr. Nalini Chilkov gave clear guidelines what supplements will be beneficial to reduce the risk of obesity and diabetes as well as cancer. Start with a healthy, balanced diet. Add an exercise program. Then consider some of the above-mentioned supplements to reduce your risk for cancer, diabetes and obesity.

Mar
04
2017

Weight Loss Surgery Is Unnecessary

Dr. Flavio A. Cadegiani gave a talk saying that weight loss surgery is unnecessary. Dr. Cadegiani is the director of a weight loss clinic with the name Corpometria Institute in Brasilia, Brazil. He is board certified in endocrinology and metabolism and in internal medicine. He presented his talk at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended.

Here are the main topics that he presented.

Weight measurements are wrong when based on the BMI

Dr. Cadegiani stated that we do not understand obesity, because we look at it from the wrong angle. Current dietary approaches have failed. But obesity research is still proceeding in the wrong way. If all else fails, weight loss surgery is finally the last resort. But this is wrong.

The problem with body mass index (BMI) is that people would consider an athletic body type “obese”, because the BMI exceeds 30.0. However in a very muscular person the reason for the elevated BMI is an increased muscles mass, not fat. Body composition scales reveal that, but a simple weight measurement does not.

Dr. Cadegiani recommended measuring waist circumference with <94 cm (37 inches) for men and <88 cm (34.65 inches) for women being normal.

10 reasons why we are misled by the BMI

  1. The inventor of the BMI was a mathematician. He explicitly stated that the BMI would not predict the level of fatness of an individual. The other factors are bone mass and muscle mass.
  2. Because the BMI ignores the waist size, it is scientifically invalid.
  3. There are physiological reasons why it is wrong: studies did not factor in the relative proportion of the bone, muscle and fat content.
  4. The BMI gets the logic wrong: the CDC site claims that the BMI “is a reliable indicator of body fatness for people”. This is simply not true!
  5. The BMI is based on bad mathematics: the formula assumes low muscle mass and high fat content.
  6. The BMI is lying by scientific authority: Dr. Cadegiani said it has an “air of scientific authority, but it is mathematical snake oil.”
  7. The BMI suggests that there are distinct categories of underweight, ideal, overweight and obese. It assumes sharp boundaries that hinge on a decimal place. All of this is nonsense.
  8. Cynical people could suspect that medical insurance companies lobby for the continued use of the BMI as it keeps their profits high. Sometimes insurance companies charge higher fees for people with an elevated BMI.
  9. Doctors can contribute to the continued use of the BMI, if they don’t feel the need to use another way of assessing their obese patients.
  10. It is embarrassing that we still base the assessment of obesity on a 200-year-old mathematical formula when we know of  more reliable measures.

Bariatric surgery done too easily

Dr. Cadegiani noted that publications on bariatric surgery (=weight loss surgery)

underreport surgical complications and deaths. The bariatric industry is rich, and 90% of the booths during obesity conferences belong to bariatric-related companies. Long-term follow-up studies are lacking. Those who do follow-ups report an increase of pancreatic tumors after 10 years following bariatric surgery.

Long-term follow-ups also describe a 70% increase of psychiatric disorders including depression and alcoholism. Those who had bariatric surgery experience a 200% increase in suicides.

Overcoming weight centered approach

Here is how to avoid the weight-centered approach that would lead the clinician to wrong conclusions.

There are four factors that need consideration:

  1. The assessment includes metabolic blood markers
  2. The assessment incorporates body composition scales
  3. The patient participates by measuring waist circumference and body weight
  4. The clinician incorporates clinical signs and symptoms

Classic metabolic markers are liver enzymes and hormone levels like testosterone, Thyroid (T3) LH and IGF-1. Apo B and triglyceride levels have to come into consideration  for a lipid metabolism assessment. The physician monitors inflammation through a combination of uric acid levels, ferritin and C-reactive protein (CRP). An oral glucose tolerance test and fasting insulin level can predict diabetes 5 to 10 years before it will occur clinically. Other metabolic markers are homocysteine and metalloproteinases. There are newer tests to measure insulin resistance.

Oxidized LDLc is the only marker that is linked to diabetic retinopathy. Another marker, resistin is an independent marker for obesity-related cancer, cardiovascular disease and overall mortality. A triglyceride glucose-waist circumference index has been found to be the best predictor for future development of diabetes.

Body composition analysis

The patient measures his/her own waist circumference and body weight on body composition scales. This gives additional information about fat and muscle composition. Dr. Cadegiani’s team likes to understand what is really going on in terms of what triggers fat excess.

Questions are: what is the level of emotional overeating? How much anxiety is there in the patient’s life that leads to overeating? What is the social and cultural environment? What were previous weight loss attempts? And what is the family history in term of excessive weight?

Other important factors are to check for binge eating disorders or night eating syndrome. In addition any patient planning to go for weight loss therapy should be checked for depression, mood disorders and suicide potential.

Otherwise body composition scales by electrical bioimpedance were found to be very useful in assessing fat and muscle percentage as well as visceral fat percentage.

Aggressive clinical approach improves metabolism

Dr. Cadegiani and his group have published their own research paper in February 2017 showing that an aggressive clinical approach can prevent the need for bariatric surgery.  This publication describes that in a group of 43 subjects who were thought to be bariatric surgery candidates only 3 patients (7%) went on to have the procedure done. 93% of the subjects were able to shed pounds with the method offered and avoided bariatric surgery.

They documented that clinical parameters and blood tests all improved on their program. The researchers focused on triggers that caused obesity in their patients. The measured markers were oxidized LDL cholesterol, triglycerides, the liver enzymes ALT and μGT, fasting glucose, Hemoglobin A1C, uric acid and CRP. All of these parameters improved with the modification in food intake. 81.2% of the weight loss was from the reduction of fat mass. 46.5% of patients had a normal waist circumference measurement at the end of the trial. They also achieved normal body fat and visceral fat percentages. As already stated 93% of all the patients in this trial avoided weight loss surgery, called bariatric surgery.

Dr. Cadegiani suggested that obesity should be approached with a scientifically based and responsible method. This will change the way we manage obesity.

Weight Loss Surgery Is Unnecessary

Weight Loss Surgery Is Unnecessary

Conclusion

Attention to detail of the patient with weight problems will allow the patient to reduce fat percentage. Waist measurements should be regularly performed as well as body composition scales measurements. This way the physician can follow the fat and muscle percentages. Key to success is to reduce the refined carb contents of food intake (sugar and starchy foods) and have a calorie deficit diet. Exercise is also an important component. An aggressive clinical approach to obesity can improve the clinical outcome and can prevent bariatric surgery.

Feb
18
2017

Weight Gain In Menopause

Dr. Tasneem Bhatia, also known as Dr. Taz gave a lecture about weight gain in menopause. This was part of the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas that I attended. The full title of the talk was “Hormone Balance and Weight Control in Menopausal Women”. Dr. Taz practices integrative medicine at CentreSpring MD, Atlanta. GA.

A few statistics about menopause

Weight gain in menopause is common. There are 50 million women who suffer from this in the US. Globally 300 million women have this problem. The average weight gain is between 5 and 50 pounds. There may be a small percentage of women where a genetic component comes in, and where all the females in the ancestry had a weight problem after menopause. But we do not know for certain what is genetic and what is due to hormone deficiency. It is only in the last few decades that doctors have determined how important hormone deficiencies are in menopause.

About 10 million women who are over 40-years-old need treatment in long-term care facilities.

We will see below that when physicians incorporate this knowledge into a treatment schedule, the weight problem can normalize. It is possible to reduce the costs of taking care for postmenopausal women with obesity and diabetes by 2/3 of these cases.

Pathophysiological changes in menopause

There are three intertwining aspects that drive weight gain in menopause. There is an altered metabolic rate, and less calories are burning, which makes you gain weight when you eat the same amount of calories. Secondly there is a significant decline of three key hormones, estrogens, progesterone and thyroid hormones in menopause. Third, as the weight rises and the other mentioned hormones are missing, it is harder for the pancreas to keep up with insulin production and insulin resistance develops. I will explain this further below.

1. Decreased energy expenditure

With the lack of the ovarian hormones there is a slowing of the resting metabolic rate. There is also is a decrease of energy expenditure from reducing fat oxidation. Overall there is less need to consume the same amount of calories as before. But the hormonal changes trigger hunger and cravings.

2. Ovarian aging

With ovarian aging there is less estrogen production in the ovaries. This leads to less ovulation in the premenopausal period. A lack of ovulations creates a lack of progesterone production. When there are anovulatory cycles, there is no progesterone producing corpus luteum reducing progesterone production further. When estrogen and progesterone are missing, this is a stress on the thyroid gland that is trying to partially compensate for the lack of the ovarian hormones. Eventually though there is permanent thyroid hormone production and hypothyroidism sets in. This is very hard on the adrenal glands that produce cortisol. For some time the adrenal glands can compensate for missing thyroid hormones with cortisol overproduction. But in time adrenal gland fatigue develops.

3. Insulin resistance

Insulin resistance can lead to diabetes, which becomes a real menace together with the metabolic changes of obesity.

Health risks of weight gain

Dr. Taz pointed out that around the time of menopause there are very specific risks that have to do with the metabolic changes. There is a definite risk for heart attacks and strokes as LDL cholesterol and triglycerides show an increase and arteries calcify from circulating calcium leaking out from the bones into the blood stream.

Osteoporosis is common in menopause; the brittle bones lead to an increased risk of fractures in the hips, wrists and vertebral bodies.

Postmenopausal women also risk increase of cancer, particularly breast cancer and colon cancer. The higher the weight, the more risky it is for these women to get one of these cancers.

Alzheimer’s disease and cognitive decline is also very common in menopause. This may be directly related to a lack of estrogen and progesterone, but may also have to do with overconsumption of sugar and starchy foods.

Hormone changes in menopause

Hormone changes in menopause can be complex. It is not only about a lack of estrogens and progesterone. All hormones work together. When there is weakness in one area (in the ovaries with menopause), this condition will affect the hormones that are acting in the same way or in opposition to ovarian hormones. In this way it is understandable that the thyroid gland can develop a weakness (hypothyroidism) or why the adrenal glands are over stimulated first, but later suffer from adrenal fatigue. In a similar way the pancreas produces too much insulin, partially because weight gain stimulates this. Typically the physician finds the fasting insulin level elevated with menopausal obesity. But as insulin levels are too high, the body’s insulin receptors get lazy and do not respond fully to insulin anymore. The name for this condition is insulin resistance. In time insulin resistance can lead to diabetes.

1. Lack of estrogen

A lack of estrogen in menopause is likely the single most important reason for weight gain in menopause.  As estrogen secretion declines, visceral obesity increases. In addition there is an impairment of insulin regulation. With obesity there is an additional risk of developing diabetes.

2. Progesterone

Progesterone is the other female hormone that is reduced with menopause. Bioidentical progesterone cream can prevent osteoporosis and hot flashes in menopause. Bioidentical progesterone replacement can also help a menopausal woman to sleep better. In menopause the production of progesterone goes down by 75% while estrogen production drops down by 35%.

3. Hypothyroidism

Menopausal women often suffer from hypothyroidism (with elevated TSH blood tests). Weight gain is often part of this. As a result it is important to check for hypothyroidism in menopausal women. It is important to check for micronutrients like iodine, selenium and iron and if they are low, supplementation may be necessary. Some women develop an inflammatory thyroiditis, called Hashimoto’s disease. A thyroid nuclear scan can confirm this. The reason this is important to recognize is that after several years when it burns itself out, hypothyroidism develops often, which requires thyroid hormone replacement.

4. Cortisol response

The cortisol response to stress is suboptimal due to the decreased progesterone levels in menopause. Progesterone is a precursor of cortisol, so in menopause not enough of it is around to synthesize cortisol. But in a group of menopausal women following a significant stressful event cortisol production was much higher than in non-stressed women.

5. Other hormones

Other hormones like leptins and melatonin are also contributing to weight gain in menopause. In rat experiments performed ovariectomies (mimicking menopause) and there was a clear relationship between low estrogen levels and weight gain. Higher estradiol doses inhibited leptin expression resulting in weight normalization.

Leptin and melatonin are influencing insulin regulation. This can in time lead to diabetes in connection with weight gain. It is at this point when a woman’s body shape can turn from a healthier pear shape to an unhealthy apple shape. The extra visceral (abdominal) fat is very active metabolically and causes inflammation in the body. These changes can lead to high blood pressure, heart attacks, strokes and digestive dysfunction.

Treatment of weight gain in menopause: food, hormones and lifestyle

How do you treat a complex problem like weight gain in menopause? It is no surprise that this will require a number of treatment modalities in combination.

1. Diet

It is important to start on an anti-inflammatory diet like the Mediterranean diet. Any extra sugar should be cut out as surplus carbohydrates lead to fat deposits and higher blood lipids. Dr. Taz suggested a 1200-calorie diet. Reduce salt intake. Eat more food during the day until 4 PM, nothing to eat after 8 PM. Increase plant-based foods, lower or eliminate trans fats. Increase foods rich in probiotics (bifidobacteria) like kefir, yogurt and kombucha.

2. Exercise 

Do some exercise in a gym where you combine a treadmill for 30 minutes with 25 minutes of weight machines for strength training. Aim for doing this 5 times per week. But it would be more beneficial doing it every day. Have additional activity bursts on and off during the day. Exercise has been shown to increase HDL cholesterol, which protects from heart attacks and strokes.

3. Stress management

Supplements like adaptogens help the adrenal gland to better cope with stress. These are available through your health food store. Meditation, yoga, self-hypnosis will all help to refocus and protect you from stress. B-complex vitamins and vitamin C strengthen your immune system and give you more energy. Building and maintaining community is another factor in reducing stress.

4. Establishing healthy sleep

Many postmenopausal women have poor sleep habits, partially from hot flashes (due to estrogen deficiency), partially from melatonin deficiency and also from progesterone deficiency. In the next section I will describe how to normalize these hormones. But in addition you need to educate yourself to go to bed between 10 PM and 11 PM every night and to sleep 7 to 8 hours. If you go to bed later, you will disturb your diurnal hormone rhythm and this will interfere with a normal sleep pattern. There is an age-related reduction of melatonin production in the pineal gland. This is why many postmenopausal women are deficient in melatonin. You may need 3 mg of melatonin at bedtime. If you wake up in the middle of the night you could take another 3 mg of melatonin. You may experience a few nightmares as a side effect; otherwise melatonin is very well tolerated.

5. Bioidentical hormone replacement

The complex hormone deficiencies described above are responsible for the many symptoms of menopausal women including weight gain. It is important to work with a knowledgeable health care provider who knows how to prescribe bioidentical hormones. Typically blood tests and possible saliva hormone tests are done before replacement. This establishes which hormones have to be replaced. Typically bioidentical progesterone is replaced first. Secondly, estrogen is added as Bi-Est cream, if blood levels indicate that it is low. If thyroid is required because of a high TSH level (meaning hypothyroidism) supplementation with Armour or a similar balanced T3/T4 combination is started. If fasting insulin levels are high, the doctor may want to start metformin as this is known to normalize insulin resistance. Blood tests have to be repeated from time to time to ensure adequate hormone levels.

6. Supplements

Every woman treated will likely require different supplements. But magnesium is one mineral that is often missing in the diet. 250 mg of magnesium twice a day will be enough for most women and men to balance internal metabolic reactions. Magnesium is a co-factor to many enzyme systems. Vitamin K2 (200 micrograms daily) and vitamin D3 (around 4000 to 5000 IU per day) in combination are important to prevent osteoporosis. Apart from these there are many options to take other supplements. Ask your healthcare provider what you should take.

Weight Gain In Menopause

Weight Gain In Menopause

Conclusion

This was a fast review of what Dr. Taz explained in a talk about weight gain in menopause. There are complex hormone changes that need to be addressed. Patients with menopause need to follow a well-balanced diet like the Mediterranean diet. Stress management skills need to be learnt. A regular exercise routine needs to be followed. Healthy sleep patterns have to be reestablished. And missing hormones need to be replaced not in synthetic forms, which are toxic to the body, but in the bioidentical forms. Postmenopausal women will feel better when this comprehensive treatment program is in place; and in time they will feel normal again.

Feb
04
2017

Benefits Of The Ketogenic Diet

Dr. Jeff Volek, PhD, RD gave a talk that clarified the benefits of the ketogenic diet. He is a professor at the Department of Human Sciences at The Ohio State University, Columbus, OH, and teaches in the Kinesiology Program. His lecture was part of the 24th Annual World Conference on Anti-Aging Medicine in Las Vegas, Dec. 9 to 11, 2016.

There were 58 slides, some of them very detailed. I will summarize as best as I can what the presentation was all about.

History of diets

Dr. Volek stated that there were unintended consequences when the low fat/ high carb diet was introduced in the 1970’s and 1980’s. Ancel Keys, a physiologist had proposed in his diet heart hypothesis that saturated fat was the culprit that caused heart attacks.

As a result all major health agencies recommended the low fat/high carb diet. Obesity, diabetes, heart attacks, and strokes were the consequences. Another offshoot later from this was the statin craze where everybody was put on statins as high cholesterol was symptomatically treated. Nothing changed the diabetes and obesity wave and heart attacks and strokes continued to kill the affected persons. Among performance athletes the hypothesis was formed that carb loading would increase muscle performance. Researchers showed evidence that carb loading would improve performance. But athletes were dissatisfied with prediabetes and metabolic problems. Both the average consumer as well as the performance athlete noted that they felt better on a low carb/high fat diet. This is what the ketogenic diet is all about.

Diet heart hypothesis

With the diet heart hypothesis the saturated fat was removed from the diet and replaced by vegetable oils rich in linoleic acid. Dr. Volek explained that blood tests and other investigations were done on people who ingested the low saturated fat/high carb diet. The question was whether this would reduce heart attack rates and deaths by lowering serum cholesterol.

The Minnesota Coronary Experiment was a double blind study, which answered this question.

Cholesterol was reduced in the experimental group. But there was no reduction of heart attacks or strokes compared to a control group. Of concern was the large amount of refined carbohydrate content with the low fat diet. This essentially was responsible for the obesity and diabetes wave. The excess sugar turned into fat deposits and to insulin resistance, which caused diabetes. The low saturated fat/high carb diet of the 1960’s to 1990’s did not reduce heart attacks and strokes. To the contrary: the obesity/type 2 diabetes wave it had caused increased mortality from strokes and heart attacks further.

Laboratory tests on low fat/high carb diet versus the ketogenic diet

Forget hypotheses for a moment. Let us review what the different diets do in terms of lab tests. In a study where physicians put 40 overweight people with metabolic syndrome on a low fat diet or a low carb/ketogenic diet, they received the following blood test results. There were 20 patients in each group.

  1. Low fat/high carb diet

Triglycerides in the blood went down by 20%, saturated fatty acids by 22%. LDL (the bad cholesterol) rose by 4%. Insulin levels went down by 17% and leptin levels also down by 17%. Glucose levels were down by 1%.

  1. Low carb/ketogenic diet

Triglycerides went down by 52%, saturated fatty acids by 57%. LDL (the bad cholesterol) went down by 18%. Insulin levels went down by 49% and leptin levels by 42%. Glucose levels were down by 11%.

In this group of 20 subjects for each group the body mass index went down by 5% for the low fat diet and by 10% for the ketogenic diet after 3 months. The abdominal fat went down in that time by 12% for the low fat diet and by 20% for the ketogenic diet. The conclusion from these laboratory results and from the body measurements is that the low fat diet is showing some results of weight loss, but the ketogenic diet has superior results. The same is true for the blood tests. Only the ketogenic diet showed reduction of 7 key anti-inflammatory markers. In contrast, the low fat diet did not trigger the production of a single anti-inflammatory marker.

Anti-inflammatory benefits of the ketogenic diet

A 2008 study showed that several anti-inflammatory markers were greatly reduced from the ketogenic diet while a low fat diet did not show such a reduction.

As this 2009 study showed the LDL particles were getting bigger under the influence of a ketogenic diet, but they were getting smaller with a low fat diet.

Large LDL particles are also called pattern A particles, while small LDL particles are also called pattern B particles.

As this link shows there is good evidence that small LDL particles oxidize easier and are more atherogenic (causing hardening of the arteries). This means they lead to hardening of the arteries easier translating into heart attacks and strokes down the road. It is one thing that a ketogenic diet leads to larger LDL particles, which are more resistant to oxygenation. But it is another good thing that this diet is also anti-inflammatory. Overall this means that a ketogenic diet is counteracting the development of heart attacks and strokes.

Are saturated fatty acids in the diet causing heart attacks or strokes?

Dr. Volek discussed several large studies that have investigated this question. One of these studies discussed was a metaanalysis from 2010. Like all the other studies it showed that saturated fatty acids do not cause heart attacks and strokes. This is the secret behind the Inuit and the Eskimo diet. It is a high fat and meat diet. There is lots of seafood on the menu as well, which provides omega-3 fatty acids.

Dr. Volek pointed out that if you replace a certain percentage, let’s say 5% of saturated fatty acids with carbohydrates, this would cause 7% more heart attacks. He showed literature evidence to back this up. What causes increased heart attacks and strokes is more refined carbs in your diet (sugar and starchy foods!).

Do saturated fatty acids in your blood increase the risk for disease?

Dr. Volek showed several slides with references to various publications. Elevated saturated fatty acids in the blood cause a higher risk of getting a heart attack, heart failure, metabolic syndrome and diabetes. But this does not happen with a ketogenic diet. The values of the saturated fatty acids in the blood are 4% lower with the start of a ketogenic diet. With a low carb diet the calories derived from carbs are 12%. In comparison a low fat diet has 56% of carbs. Protein content in the low fat diet is 20%, in the ketogenic diet 28%. Saturated fat content in the low fat diet is 24%, in the ketogenic diet it is 59%.

Comparison of saturated fatty acid diet with the ketogenic diet

Let’s assume that both diets remain at 1500 Cal. per day. Then the saturated fat content for the low fat diet is 12 grams and the carbohydrate content is 208 grams. For the ketogenic diet these values are as follows: 36 grams of saturated fat and 45 grams of carbohydrates. Although there was a threefold higher saturated fatty acid intake, measurements of the circulating level of saturated fatty acids were 4% lower.

You are what you eat, but go easy on carbs

Dr. Volek pointed out that what makes you healthy or sick is how many carbs you include in your diet. If you follow a ketogenic diet with only 12% carbs you are much better off than when you follow a diet like the low fat diet with 56% of carbs. The higher the carb percentage in your food, the higher the production of saturated fatty acids in your system and the higher the storage of saturated fatty acids in your body fat. Conversely, the lower the carb percentage in your food is the higher the oxidation of saturated fatty acids will be.

Low fat diet compared to ketogenic diet

In other words the saturated fatty acids disappear from your blood. Also, with a ketogenic diet the storage of saturated fatty acids is lower in your body fat. With a low fat diet your insulin resistance increases, while with a ketogenic diet insulin resistance decreases. The difference in calories in these two diets (56% derived from carbs in a low fat diet versus 12% derived from carbs in a ketogenic diet) explains why the obesity/type 2 diabetes wave has developed and why heart attacks and strokes still top the mortality figures today.

Endurance athletes win medals on a ketogenic diet

Dr. Volek shared a few cases of world-class athletes that are on a ketogenic diet. They did well for themselves winning medals. Tim Olsen won the Western States 100-mile endurance run from Squaw Valley to Auburn, CA in 2012. Zach Bitter was the 100-mile track record holder in 2015. Mike Morton won the American 24-hour distance running record for 172 miles. Two Tour De France bicyclists made first and second place, Chris Froome (first place) and Romain Bardet (second place).

Sports teams also have been successful on a ketogenic diet: the Columbus Crew soccer team; New Zealand national rugby union team, commonly called the All Blacks; the Los Angeles Lakers basketball team are all on ketogenic diets.

Dr. Volek also pointed out that the military has tested the ketogenic diet. A ketogenic diet restores metabolic health, gives the soldiers more endurance, more stress resistance and decreased fatigue.

Benefits Of The Ketogenic Diet

Benefits Of The Ketogenic Diet

Conclusion

A ketogenic diet is on the one end of the carb spectrum with only 10 to 12% of calories derived from carbs. At the other end is the low fat/high carb diet that caused the obesity/diabetes wave. The Mediterranean diet is in the center. The more you are able to cut down the carb percentage in your diet by cutting out sugar and starchy foods, the more your metabolism stabilizes and blood tests can be measure this. The ketogenic diet makes you lose weight down to your ideal weight and makes you gain more muscle strength and physical endurance. Sophisticated blood tests have shown that inflammatory markers go down on a ketogenic diet and factors that lead to hardening of arteries also go down.

The end result of being on a ketogenic diet

The end result on the ketogenic diet is that the rate of heart attacks and strokes goes down, something which was the original goal of Ancel Keys. It did not work, but it promoted a wave of diabetes and heart disease! Ironically adding saturated fat and other healthy fats while cutting down carbs will achieve disease prevention. This is the opposite of what Ancel Keys had recommended to do and what the processed food industry has mimicked. The ketogenic diet lowers mortality by cutting down heart attacks and strokes. With this knowledge it will finally be possible to get people on a path to better health.

More information about ketogenic diet: https://www.dietdoctor.com/low-carb/keto

Jan
28
2017

Cardiovascular Disease And Inflammation

Dr. Mark Houston talked about cardiovascular disease and inflammation – “the evil twins”. He presented this lecture at the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Dr. Houston is an associate clinical professor of medicine at the Vanderbilt University Medical School in Nashville, TN 37232.

New thinking about cardiovascular disease and inflammation

Dr. Houston pointed out that the old thinking about cardiovascular disease is defunct, needs replacing and, of course, that the new thinking needs to take its place. Specifically, here are a number of points regarding the new thinking.

  1. Coronary heart disease and congestive heart failure are diseases of inflammation. In the same fashion, oxidative stress, vascular immune dysfunction and dysfunction of the mitochondria are also part of them.
  2. Moreover, in the past it was difficult to reduce these cardiovascular diseases. In contrast, with the new thinking there are now new treatment approaches that help cure cardiovascular disease.
  3. On the whole, the development of heart disease has a long history. First, endothelial dysfunction predates coronary artery disease by many years. Second, the next step is vascular smooth muscle dysfunction. Finally, inflammation develops and structural changes occur in the small and larger blood vessels with atheromatous deposits (plaques) and final occlusion, at which point you get a heart attack.

New approach to the old problem of plugged coronary arteries

Canadian physician Sir William Osler has already stated more than 100 years ago “A man is as old as his blood vessels”. In the first place, the old thesis was that cholesterol would lead to deposits that close coronary blood vessels and cause heart attacks. Dr. Houston called this the “cholesterol-centric “ approach. In reality, the truth is that with conventional blood tests you are missing 50% of all the high-risk patients that are going to develop heart attacks. They are missing the ones that have chronic inflammation, but normal cholesterol levels.

Coronary artery damage from cholesterol elevation versus inflammation

What was not common knowledge in the past was that oxidative stress associated with normal aging can also lead to chronic low-grade inflammation. This oxidative stress leads to mitochondrial DNA changes. Associated with it are biochemical changes that cause chronic inflammation, which in turn will affect the lining of the arteries. The literature describes a metabolic change that known as metabolic syndrome. It leads to high blood pressure, hardening of the arteries and eventually heart attacks and strokes. Accordingly, the key today is to include in screening tests all parameters that will predict who is at risk to develop a heart attack or not.

Blood tests to screen for cardiovascular disease and inflammation

The physician should check blood tests and health history for dyslipidemia, high blood pressure (hypertension), hyperglycemia, smoking, diabetes, homocysteinemia, obesity etc. Also, patients with high GGTP (gamma-glutamyl transferase) levels in the blood are more at risk to develop diabetes. This in turn leads to inflammation of the arterial wall and heart attacks. There are 25 top risk factors that account for all causes of heart attacks.

Briefly, apart from the 7 factors already mentioned above the physician wants to check for high uric acid levels (hyperuricemia), kidney disease, high clotting factors (fibrinogen levels), elevated iron levels, trans fatty acid levels, omega-3 fatty acid levels and omega-6 to omega-3 ratio, low dietary potassium and magnesium intake with high sodium intake, increased high sensitivity C reactive protein level (hs CRP measuring inflammation).

Further high risk factors for coronary artery disease

The list to test for cardiovascular disease risk continues with blood tests for vascular immune dysfunction and increased oxidative stress, lack of sleep, lack of exercise, subclinical low thyroid levels, hormonal imbalances for both genders, chronic infections, low vitamin D and K levels, high heavy metals and environmental pollutants.

The speaker stated that he includes a hormone profile and vitamin D levels. He does biochemical tests to check for mitochondrial defects. Micronutrients are also checked as cardiovascular patients often have many nutritional deficiencies coupled with cardiovascular factors. Inflammation is monitored through testing the levels of C-reactive protein (CRP).

The Rasmussen score

In order to assess the risk of a patient Dr. Cohen, a cardiologist has developed the Rasmussen score, which is more accurate than the Framingham score.

The following tests are performed on the patient: computerized arterial pulse waveform analysis (medical imaging), blood pressure at rest and following exercise and left ventricular wall of the heart by echocardiography. Further tests include urine test for microalbuminuria, B-type natriuretic peptide (BNP, a measure of congestive heart failure), retinal score based on fundoscopy, intima-media thickness (IMT, measured by ultrasound on the carotid artery) and electrocardiogram recording (EKG).

Here is what the Rasmussen score means:

  • With a disease score of 0 to 2: likely no heart attack in the next 6 years
  • The disease score is 3 to 5: 5% likely cardiovascular events in the next 6 years
  • Disease score > 6: 15% likely cardiovascular events in the next 6 years

Non-intervention tests to measure cardiovascular health

1. The ENDOPAT test

With this test the brachial artery is occluded with a blood pressure cuff for 5 minutes. Endothelial dysfunction is measured as increased signal amplitude. A pre- and post occlusion index is calculated based on flow-mediated dilatation. The values are interpreted as follows: an index of 1.67 has a sensitivity of 82% and specificity of 77% to predict coronary endothelial dysfunction correctly. It also correlates to a future risk for coronary heart disease, congestive heart disease and high blood pressure.

2. The VC Profile

This test measures the elasticity of the arteries. There is a C1 index that measures the elasticity of the medium and smaller vessels and the C1 index, which measures elasticity of the larger arteries and the aorta. The smaller the numbers are, the less elastic the arterial walls.

3.The Corus CAD score

This is a genetically based blood test. The score can be between 0 and 40. If the score is 40, there is a risk of 68% that there is a major blockage in one or more coronary arteries.

4. Coronary artery calcification

The CAC score correlates very well with major event like a heart attack. There is a risk of between 6- and 35-fold depending how high the CAC score is. The key is not to wait until you have calcification in your coronary arteries, but work on prevention.

Treatment of cardiovascular disease and inflammation

When the doctor treats heart disease, all of the underlying problems require treatment as well. It starts with good nutrition like a DASH diet or the Mediterranean diet.

Next anti-inflammatory and other supplements are added: curcumin 500 mg to 1000 mg twice a day, pomegranate juice ¼ cup twice per day, chelated magnesium 500 mg twice per day, aged garlic 1200 mg once daily, taurine 3 grams twice per day, CoQ-10 300 mg twice per day and D-ribose 5 grams three times per day. This type of supplementation helps for chest pain associated with angina. On top of this metabolic cardiology program the regular cardiac medicines are also used.

Additional supplements used in the metabolic cardiology program may be resveratrol 500 mg twice per day, quercetin 500 mg twice per day, omega-3 fatty acid 5 grams per day, vitamin K2 (MK 7) 100-500 micrograms per day and MK4 1000 micrograms per day. In addition he gives 1000 mg of vitamin C twice per day. This program helps in plaque stabilization and reversal and reduction of coronary artery calcification.

Case study showing the effect of metabolic cardiology program

Here is a case study where Dr. Houston treated a heart patient. He was a white male, first treated for congestive heart failure as a result of a heart attack in June 2005. Initially his ejection fraction was 15-20%. His medications were: digoxin 0.25 mg once daily, metoprolol 50 mg twice per day, ramipril 10 mg twice per day, spironolactone 25 mg twice per day and torsemide 20 mg once daily. These medications remained in place, but the patients followed the metabolic cardiology program in addition. Here are the results of his ejection fraction (EF) values after he was started on the metabolic program:

  • Initial measurement: EF15-20%. Marked shortness of breath on exertion.
  • 3 months: EF 20-25%. He reported improved symptoms.
  • 6 months: EF 25-30%. He said that he had now minimal symptoms.
  • 12 months: EF 40%. He had no more symptoms.
  • 24 months: EF 50%. He reported: “I feel normal and great”.
  • 5 years: EF 55%. He said” I feel the best in years”.

A normal value for an ejection fraction is 55% to 70%.

Cardiovascular Disease And Inflammation

Cardiovascular Disease And Inflammation

Conclusion

Testing for heart disease risk has become a lot more sophisticated than in the past, and the tests have opened up a window to early intervention. Metabolic cardiology is a new faculty of cardiology that assists in the reversal and stabilization of heart disease. It will help high blood pressure patients and stabilizes diabetes, which would otherwise have deleterious effects on heart disease. Metabolic cardiology improves angina patients. It also prevents restenosis of stented coronary arteries. As shown in one clinical example reduced ejection fractions with congestive heart failure will improve. The metabolic cardiology program achieved all of these improvements.

As usual, prevention is more powerful than conventional treatment later. To give your cardiac health a good start, don’t forget to cut out sugar, exercise regularly and follow a sensible diet.

Jan
14
2017

How To Avoid Being Hungry

Dr. Ludwig gave a lecture about how to avoid being hungry at a conference in Las Vegas. The actual topic was “Always Hungry?” I attended the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas where this lecture was given. Dr. Ludwig is a Harvard-based endocrinologist who has been researching weight loss methods and obesity for over 20 years. Here is a list of his major publications.

Dr. Ludwig stated that the low fat/high carb diet popular in the1980’s until the early 2000’s was misguided and probably even harmful. The theory at that time was that obesity was caused by too much saturated fat. This has since been proven to be wrong. Instead it has been proven that increased sugar intake is responsible for the obesity wave.

General information about weight gain

The carbohydrate-insulin model states that without insulin you cannot gain weight, because in order to store fat in fatty tissue you need insulin to transport fatty acids across the cell membrane of fat cells.

In this context it is important to note that high glycemic index food increases the blood sugar. This leads to stimulated insulin production, and the liver converts the extra sugar into fatty acids that get deposited as fat in fatty tissue.

The glycemic load from a person’s diet is the single best predictor for a rising blood sugar level. After food intake the blood sugar goes up, glucagon goes up, epinephrine goes up within 4 hours. It is the epinephrine, which after 4 hours makes you hungry again.

The nucleus accumbens is the addiction center. At 4 hours after a high glycemic index milk shake the nucleus accumbens was stimulated in 12 subjects of a double blind trial.

The nucleus accumbens does not work in isolation. It is not only involved in food satisfaction, but also in sexual satisfaction and even plays a role in satisfaction that some people get from playing video games.

Low-carbohydrate, Mediterranean or low-fat diet

In an Israeli study from the New England Journal of Medicine in 2008 investigators were interested to find out which diet was helping people to lose most weight.

322 moderately obese subjects that were aged 52 years on average were randomized to one of the following diet groups.

They compared

  1. a low fat diet (Atkins type, restricted calorie) with a
  2. Mediterranean diet (low carb, restricted-calorie) and a
  3. Low fat/high carb diet (low fat, non-restricted-calorie)

What was the result? The mean weight losses were: 2.9 kg (low fat group), 4.4 kg (Mediterranean diet group), and 4.7 kg (low fat/high carb group). Of the 272 participants who had completed the intervention after two years of the study the weight loss was 3.3 kg, 4.6 kg, and 5.5 kg in the same sequence as above.

Next the researchers examined the ratio of total cholesterol to high-density lipoprotein cholesterol, which is a measure for the heart attack risk. It was 20% lower from the baseline in group 2 (Mediterranean diet group). The low fat groups (group 1 and 3) were 12% lower from the baseline.

36 subjects had diabetes. There was a clear winner with respect to lower fasting blood sugar and insulin levels, namely the Mediterranean diet (group 2).

The authors concluded that the Mediterranean diet is preferable to low fat diets as they have shown an improvement in lipid profiles and in control of diabetes.

The “POUNDS LOST” study

This was a 2-year study that investigated 4 different lower calorie diets to help people lose weight. Despite the significant difference in diet composition, these 811 free-living overweight or obese adults ages 30-70 from Boston, MA and Baton Rouge, LA lost 16 pounds at 6 months and 9 pounds at the end of two years. The diets were 1) low fat (20%) or 2) high fat (40%) 3) average protein (15%) or 4) high protein (25% of total calories).

The authors concluded that any reduced, calorie-controlled diet would help obese or overweight people to achieve weight loss that lasts. It is interesting that it did not matter whether the diet was low or high in fat, or had low or high protein content. What did matter was that all diets were low in sugar.

Sugar is the driving force

Dr. Ludwig pointed out that without insulin you couldn’t gain weight. High glycemic index food increases blood sugar. The glycemic load is the single best predictor to indicate whether a person will gain weight or lose weight when you consume food. It is an irony that in the 1980’s and 1990’s the wrong assumption that a low fat/high carb diet would be heart healthy created the obesity wave. We have abundant data available that show otherwise: high sugar content of food brings the calorie count up as everybody can read on the food labels.

Sugar stimulates the food addiction center

This will lead to weight increase, which has been abundantly proven. Sugar also stimulates your nucleus accumbens, the food addiction center. As you probably know it is extremely difficult to get out of this food addiction cycle unless you cut out sugar. You even need to go one step further and include many starchy foods that will within 30 minutes of digesting them turn into sugar. Your system makes no difference whether you eat a few teaspoons of sugar or two slices of white bread. The response of your pancreas is insulin, which gladly stores the fatty substances your liver made as fat.

How to get out of the vicious food cycle

As the quoted publications and many other ones have shown, it only matters that you limit your refined carb intake. You can vary the fat content and you can vary the protein content and still lose weight provided you watch the low carb intake. You also need portion control, which is a given! Study glycemic index and glycemic load sites on the Internet. The links I provided are just some examples. The more you educate yourself about carbs, the better for you. Note that many fruit and vegetables belong to the low-glycemic load/index foods. Avoid the high glycemic index foods like dates and cornflakes. Stick to low-glycemic index foods, which are less than 55. With regard to low-glycemic load food the values should be below 10.

The Mediterranean diet is a very desirable diet, which has been proven to be anti-inflammatory.

The zone diet of Barry Sears is also an anti-inflammatory diet and he summarizes this in this link.

How To Avoid Being Hungry

How To Avoid Being Hungry

Conclusion

I have summarized the content of a talk given by Dr. Ludwig. We learnt from this that sugar and refined carbs are the driving force that leads to “feeling hungry”. This stimulates your nucleus accumbens, the food addiction center. Let’s assume that a person is obese or overweight and wants to lose some weight. You need to start by being strict with yourself. Cut out sugar and high-glycemic foods. This will remove the food addiction factor that keeps you going back to the wrong, high calorie foods. You will also consume more low calorie vegetables and fruit, which have more fiber that fills you up.

Monitor your body mass index

Once you are used to the new way of eating, there is no need to count calories. I recommend that you weigh yourself daily on body composition scales and record the results. This allows you to monitor your body mass index (BMI), your weight, your fat percentage, and your muscle percentage. Typically you will lose 2 to 3 pounds per week on such a low-calorie diet. Later the weight loss will slow down to 1 to 2 weeks per week until you reach your goal. Don’t go lower than a BMI of 21.0 to 22.0 and discuss your goal with your doctor.

Jan
02
2017

Gut Bacteria Can Protect Your Brain

The neurologist, Dr. David Perlmutter gave a keynote address where he pointed out that gut bacteria can protect your brain. The topic of his actual talk was “Rewrite your brain’s destiny” and the venue was the 24th Annual World Congress on Anti-Aging Medicine (Dec. 9-11, 2016) in Las Vegas. Many of the talks centered around the gut microbiome. Specifically, in this talk Dr. Perlmutter stressed the fact that the right mix of gut bacteria will protect your brain, while the wrong mix can make you sick. There were many slides, but too much information to mention all of details of the talk here. With this in mind, I will summarize the broad outline of Dr. Perlmutter’s presentation and certainly emphasize the practical implications this has for everyday life to prevent degenerative brain diseases.

A few facts

Did you know that the brain uses 25% of the body’s energy, but has only a 3% of the body’s weight?

There are trillions of gut bacteria

The gut flora has trillions of gut bacteria with its own DNA material. 99% of the DNA material in our body comes from the gut bacteria and the bacteria on our skin surface; only 1% of the entire DNA in the body is your own DNA. We are eating for 100 trillion bacteria, but it is important to remember that if they are good bacteria they provide us with important vitamins and they produce molecules that stimulate our immune system.

We need healthy gut bacteria

This means we better have bacteria in our guts that are friendly, not the bad bacteria that can cause us problems. An Italian study determined the gut flora of children in central Africa (Burkina Faso) and compared the gut flora to children from developed countries in Europe. There was a significant difference with the African children having a healthy microbiome in the gut and the children from developed Europe having unhealthy gut bacteria. This is important new information. Many other research papers have established that leaky gut syndrome and autoimmune diseases are linked to dysbiosis, which is the name for the unhealthy microbiome in the gut.

Chronic inflammation

Dr. Perlmutter showed several slides where literature was cited showing that chronic inflammation in the civilized world is increasing. He also showed that dysbiosis (unhealthy gut bacteria taking over) is also increasing. On several slides Dr. Perlmutter showed that in civilized countries like Iceland, Denmark, Germany, the US, Japan and others the bacterial diversity of the gut bacteria in people was vastly reduced compared to the diversity of gut bacteria of people in Kenya, Ethiopia, Nigeria or rural India.

Diminished gut bacterial diversity causes more Alzheimer’s disease

The same countries that have diminished gut bacterial diversity (dysbiosis) also have the highest prevalence of Alzheimer’s disease. On the other hand the same countries with diverse gut bacteria have a low incidence of Alzheimer’s disease. When infestation with parasites was examined there was also a parallel between increased parasitic stress and low Alzheimer’s disease rates, again in countries like Kenya, Ethiopia, Nigeria or rural India. The same countries where gut dysbiosis was present the parasitic infestation was low.

Further research has established that gut dysbiosis leads to an inflammatory condition of the gut where lipopolysaccharides (LPS) from gut bacteria are absorbed causing inflammatory reactions within the body.

Leaky gut syndrome causes neurological diseases

At the same time this leaky gut syndrome can cause obesity and leakage in the gut/brain barrier as indicated in this link. The result is neuroinflammation, cognitive impairment and vulnerability to develop Alzheimer’s disease. Our most dreaded brain diseases come from inflammation: Alzheimer’s, Parkinson’s disease, autism, multiple sclerosis etc. These are degenerative brain disorders due to chronic inflammation. If you eat a lot of red meat, sausages and processed foods your gut microbiome will undergo negative changes. If you eat healthy food with lots of vegetables, fruit and you cut out sugar and too many starches, you have a healthy microbiome, which develops a robust immune system. We have to rethink the gut/brain connection and learn how to prevent these chronic illnesses.

Obesity and gut dysbiosis

The link above showed that obesity has a connection to inflammation. It was also shown with MRI scans that the part in the brain, called hippocampus was shrivelled up (atrophied). This is a typical sign of dementia and Alzheimer’s disease. The investigators also confirmed with mental health functional tests that these patients had cognitive decline.

Another study also noticed that in a group of obese patients the hippocampus part of the brain was shriveled up the more obese people were. Obesity and dysbiosis of the gut flora are part of the same problem.

Practical application: the DASH diet and the Mediterranean diet are both healthy, balanced diets, strikingly different from the Standard American diet. In a study the hypothesis was tested whether the DASH diet and the Mediterranean diet would postpone dementia in a group of elderly patients. The answer was: yes, the hypothesis is true.

What does gut dysbiosis do?

It was shown in mice that chronic inflammation of the gut through ingestion of an irritant (dextran sodium sulfate) led to reduced new nerve growth in the hippocampus compared to control animals. It only took 29 days to show a marked difference between experimental and control animals in terms of reduced growth in the nerve cells of the hippocampus, the center of cognitive control.

The gut wall released inflammatory kinins, which were the negative mediators affecting the brain.

Antibiotic residue and Roundup in food causes gut dysbiosis

Antibiotic treatments and antibiotic residues in milk, milk products, meat, but also in all GMO foods are the irritants of the gut wall in humans. The antibiotics change the gut flora and lead to dysbiosis, which then causes gut wall inflammation and the cascade of events described above. The new finding is that GMO food contains RoundUp (they are “Roundup ready” crops). The herbicide Roundup was originally patented as an antibiotic and still leads to significant dysbiosis. Dr. Perlmutter urged the audience to buy organic food as the only method to reduce our exposure to Roundup. Roundup contributes to causing celiac disease and gluten intolerance in addition to exposure to the modern wheat (Clearfield wheat). The FDA is starting to do testing on foods for Roundup (glyphosate).

Roundup linked to cancer

If things are sounding bad for Roundup, it only gets worse: Roundup has now been linked to causing cancer. In medicine it usually takes some time before the effect becomes obvious is. The agriculture industry has embraced the use of Roundup; I suspect that denial will be the first line of defense. My first line of defense in turn is to stick to organic food.

To sum up: Roundup and the Standard American diet lead to dysbiosis in the gut, which causes leaky gut syndrome. This causes inflammation with the release of cytokines and LPS from the gut wall to the blood. These substances cross the blood/brain barrier and lead to inflammation in the brain. This affects the hippocampus with the classical sign of shrinkage.

Chronic inflammation and neurological disease

But Parkinson’s disease, multiple sclerosis, autism in children and Alzheimer’s disease in older people are all caused by chronic inflammation. There are three more brain-related diseases that are related to gut inflammation: stroke, depression and attention deficit hyperactivity disorder (ADHD). Dr. Perlmutter spent some time explaining that antibiotic overuse even leads to an increase of breast cancer as a Danish study has shown. Antibiotic use showed a linear increase of breast cancer as a result of increased antibiotic amounts used. The highest group had a twofold risk compared to a control group with no antibiotic use. Dr. Perlmutter interpreted this to indicate that chronic gut inflammation can even cause a disease like breast cancer.

What can we do to diversify our gut bacteria?

  1. Exercise: A recent study has shown that regular exercise is associated with a diversified gut flora. The reason seems to be the production of butyrate with exercise, which leads to a diversified gut flora. LPS levels (lipopolysaccharides from gut bacteria) are lower in people with a higher fitness score.
  2. Eat a DASH diet or the Mediterranean diet as indicated above.
  3. Avoid GMO foods because of the presence of Roundup, which functions like an antibiotic and leads to gut bacteria dysbiosis.
  4. Remember “Antibiotics are weapons of mass microbial destruction”. If you need to take them be careful that you rebuild your gut flora with probiotics. Use of antibiotics increases the risk of type-2 diabetes by 1.53-fold. It also causes a quadrupling of Alzheimer’s disease.
  5. A woman should consider natural childbirth whenever possible, as with a vaginal birth the child gets into contact with gut bacteria. Vaginally delivered children remain healthier than children delivered by Cesarean section for several years.
  6. Acid-suppressing medications and NSAIDs (anti-inflammatory medication for arthritis) can also lead to dysbiosis. Proton pump inhibitors increase the risk of Alzheimer’s disease by 44%.
  7. Prebiotic fiber can prevent Alzheimer’s. Probiotics do the same.
  8. Avoid sugar: even the Oompa Loompa knew that “If you eat sugar, you get fat”. Obesity and gut dysbiosis cause a higher risk of degenerative brain diseases.
  9. Take magnesium supplements (250 mg twice per day) and DHA from fish oil capsules. It stabilizes your brain metabolism.
  10. In severe, persistent cases of gut dysbiosis a fecal transplant can be considered by your gastroenterologist. This procedure takes place in more than 500 hospitals in the US.
Gut Bacteria Can Protect Your Brain

Gut Bacteria Can Protect Your Brain

Conclusion

The diversity of gut bacteria is immensely important. As discussed, in rural areas of the world there is gut bacteria diversity. In civilized parts of the world dysbiosis of the gut flora frequently occurs. This can lead to gut inflammation and the inflammation eventually becomes internal and can even reach the brain. These are the points to remember: exercise; avoid GMO foods, use prebiotics and probiotics. Avoid antibiotics; also avoid meat from animals that were fed antibiotics for faster growth. Don’t eat processed foods and avoid sugar. A healthy gut creates a healthy body, and this includes a healthy brain as well.

Dec
31
2016

What Works Against Alzheimer’s?

.Eli Lilly’s promising drug solanezumab failed; so, what works against Alzheimer’s? This drug was supposed to dissolve the amyloid deposits that function like glue and make the patients lose their memory. This phase 3 trial was to test the drug on patients to assess efficacy, effectiveness and safety. But instead it showed that the new drug did not stop the loss of memory.

Brain bleeding as a side effect of potential Alzheimer’s drug

Now all those who were hoping for solanezumab to be effective, will jump on another drug, aducanumab. Biogen from Cambridge, Massachusetts, has developed this drug. Out of 165 subjects only 125 completed preliminary studies. 40 patients who discontinued it, had negative side effects. These included fluid building up in the brain, which was thought to be due to removal of the plaques. But others, had brain bleeding.

Although the drug manufacturer is still hoping that aducanumab will work out as an anti-Alzheimer’s drug, I have my doubts. A drug that can have potential brain bleeding as a side effect does in my opinion not qualify as an anti-Alzheimer’s drug.

Factors that help prevent Alzheimer’s

1. Diet can be as effective as a drug in treating Alzheimer’s

In September 2015 researchers from Rush University published results of putting Alzheimer’s patients on the MIND diet. The MIND diet was a prospective study where 923 people aged 58 to 98 years participated. Researchers followed these people for 4.5 years. Three groups of diets were tested: Mediterranean diet, DASH diet and MIND diet.

The MIND diet study result

The adherence to the diet was measured: those who followed the diet very closely, other participants who were less diligent, and finally those who were not compliant with the diet. With regard to the MIND diet the group with the highest adherence to the diet reduced the rate of Alzheimer’s by 53% compared to the lowest third. This is like a highly effective Alzheimer’s drug! The second group still was able to reduce the rate of Alzheimer’s by 35%, which would be like a regular strength drug. The control diets were the DASH diet and the Mediterranean diet. The group that was strictly adhering to the DASH diet reduced Alzheimer’s by 39%, the group that was very conscientious in adhering to the Mediterranean diet reduced Alzheimer’s by 54%. The middle thirds of both control diets did not show any difference versus the lower thirds.

Findings of Alzheimer prevention by diet

The conclusion was that a strict Mediterranean diet had a very good Alzheimer prevention effect, as did a strict MIND diet. However, when patients did not adhere too well to a diet, the MIND diet was superior still yielding 35% of Alzheimer’s prevention after 4.5 years. The other diets, when not adhered to that well, showed no difference from being on a regular North American diet. Here is more info about the MIND diet.

Conclusion

Avoid the Standard American Diet. Adopt a Mediterranean diet and stick to it in a strict fashion or adopt the MIND diet. The other benefit is that there are no side effects!

2. Stress and Alzheimer’s

2010 study from Gothenburg University, Sweden examined 1462 women aged 38-60 and followed them for 35 years.

Psychological stress ratings went back to 1968,1974 and 1980. 161 females developed dementia (105 of them Alzheimer’s disease, 40 vascular dementia and 16 other forms of dementia). The risk of dementia was higher in those women who had frequent/constant stress in the past. The condition became more severe the more stress they had to face in the past. Women with exposure to stress on one, two or three examinations had higher dementia rates later in life in comparison to women who had no exposure to any significant stress. Specifically, dementia rates were 10% higher after exposure to one stressful episode, 73% higher after two stressful episodes and 151% higher after exposure to three stressful episodes.

Conclusion

Prevention of Alzheimer’s is possible by avoiding stress and seeking counselling when stress occurred .

3. Be creative, prevent Alzheimer’s and dementia

In an April 8, 2015 publication from the Mayo Clinic in Rochester, MN and Scottsdale, AZ 256 participants aged 85 years and older (median age 87.3 years, 62% women and 38% men) were followed for 4.1 years. Psychological tests measured mild cognitive impairment (MCI). At the time of recruitment into the study all of the tests for MCI were normal. As the study progressed it became apparent that there were various risk factors that caused the onset of MCI, which is the immediate precursor of dementia/Alzheimer’s disease.

The finding was that the presence of the genetic marker APOE ε4 allele carried a risk of 1.89-fold to develop MCI and later Alzheimer’s disease.

Further findings of the study

When patient showed signs of depression at the time of enrolment into the study, the risk of MCI development was 1.78-fold. Midlife onset of high blood pressure led to a 2.43-fold increase and a history of vascular disease showed a relationship of 1.13-fold higher MCI development. The good news was that four activities correlated with a lower risk of developing MCI with aging. When the person engaged in artistic activities in midlife or later in life the risk for MCI development 73% lower, involvement in crafts reduced it by 45% and engagement in social activities by 55%. In a surprise finding the use of a computer late in life reduced MCI development by 53%. These are very significant observations. This would be equivalent to highly effective anti-Alzheimer’s drugs.

Conclusion

If you stimulate your mind in older age, even browsing on the computer, this will help you to prevent Alzheimer’s disease.

4. Lifestyle factors contributing to Alzheimer’s

a) Sugar consumption: Sugar consumption and too much starchy food like pasta (which gets metabolized within 30 minutes into sugar) causes oxidization of LDL cholesterol and plaque formation of all the blood vessels including the ones going to the brain. On the long-term this causes memory loss due to a lack of nutrients and oxygen flowing into the brain.

b) Lack of exercise: Lack of exercise is an independent risk factor for the development of Alzheimer’s disease. Exercise increases the blood supply of the brain, strengthens neural connections and leads to growth of neurons, the basic building blocks of the brain. Exercise increases mood-regulating neurotransmitters like serotonin and endorphins.

c) Sleep deprivation leads to memory loss, but so does the use of aspartame, the artificial sweetener of diet sodas. Make your own homemade lemonade. Squeeze the juice of half a lemon. Add mineral water to fill an 8 oz. glass. Add a tiny bit of stevia extract for sweetening. Stir and enjoy. Stevia has been in use for thousands of years.

5. Hormone changes

A lack of testosterone in men and estrogen in women interferes with cognition and memory. For this reason it is important after menopause and andropause (=the male menopause) to replace what is missing with the help of a knowledgeable health professional.

Progesterone is manufactured inside the brain, spinal cord and nerves from its precursor, pregnenolone, but in women it also comes from the ovaries until the point of menopause. The myelin sheaths of nerves requires progesterone and progesterone also has a neuroprotective function. In menopausal women bioidentical progesterone is a part of Alzheimer’s prevention.

Melatonin is a hormone, a powerful antioxidant and a neurotransmitter at the same time. It helps in the initiation of sleep, stimulates the immune system and protects from the toxic effects of cobalt. Lab tests in Alzheimer’s patients found elevated values. In an aging person it is wise to use melatonin at bedtime as a sleep aid and to preserve your brain.

6. Genetic risk of Alzheimer’s

At the 22nd Annual A4M Las Vegas Conference in mid December 2014 Dr. Pamela Smith gave a presentation entitled ”How To Maintain Memory At Any Age”. She pointed out that there are about 5 genes that have been detected that are associated with Alzheimer’s disease and in addition the apolipoprotein E4 (APOE4). About 30% of people carry this gene, yet only about 10% get Alzheimer’s disease, which shows how important lifestyle factors are (in medical circles physicians call this the “epigenetic factors”) to suppress the effect of the APOE4 gene. She also stated that our genes contribute only about 20% to the overall risk of developing Alzheimer’s disease. This leaves us with 80% of Alzheimer’s cases where we can use the brain nutrients and hormones discussed above and exercise to improve brain function.

7. Vitamin D3 protects your brain from Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative disease of old age. We know that it is much more common in patients with type 2 diabetes where insulin levels are high. Studies have shown that Alzheimer’s disease can be termed type 3 diabetes.

The resulting neurofibrillary tangles and amyloid-beta deposits damage nerve cells, which are responsible for the memory loss and the profound personality changes in these patients.

What does vitamin D3 have to do with this?

A 2014 study showed that a low vitamin D level was associated with a high risk of dementia and Alzheimer’s disease.

Specifically, the findings were as follows.

  • Vitamin D level of less than 10 ng/ml: 122% increased risk of Alzheimer’s
  • Vitamin D level 10 to 20 ng/ml: 51% increased risk of Alzheimer’s

The same research group found in two trials that vitamin D deficiency leads to visual memory decline, but not to verbal memory decline.

Generally supplements of vitamin D3 of 5000 IU to 8000 IU are the norm now. But some patients are poor absorbers and they may require 15,000 IU per day. The physician can easily determine what the patient needs in the dosage of vitamin D3 by doing repeat vitamin D blood levels (as 25-hydroxy vitamin D levels). The goal is to reach a level of 50-80 ng/ml. The optimal level with regard to nmol/L is 80 to 200 (according to Rocky Mountain Analytical, Calgary, AB, Canada).

8. Avoid sugar overload

We already mentioned sugar consumption under point 4. But here I am mentioning it again because of the insulin reaction. An overload of refined carbs leads to an overstimulation of the pancreas pouring out insulin. Too much insulin (hyperinsulinemia) causes hormonal disbalance and leads to diabetes type 3, the more modern name for Alzheimer’s. All starch is broken down by amylase into sugar, which means that anybody who consumes starchy food gets a sugar rush as well. Too much sugar in the blood oxidizes LDL cholesterol, which leads to inflammation in the body. The consequence of chronic inflammation are the following conditions: hardening of the arteries, strokes, heart attacks, Alzheimer’s due to brain atrophy, arthritis, Parkinson’s disease and cancer.

What Works Against Alzheimer’s?

What Works Against Alzheimer’s?

Conclusion

In the beginning we learnt about a failed phase 3 trial regarding an anti-Alzheimer’s drug. Next we reviewed several factors that can all lead to Alzheimer’s and that have been researched for many years. It would be foolish to think that we could just swallow a pill and overlook the real causes of Alzheimer’s disease. I believe there will never be a successful pill that can solve the increasing Alzheimer’s problem. It is time that we face the causes of Alzheimer’s. This means cutting down sugar to normalize your insulin levels.

Lifestyle changes necessary to avoid Alzheimer’s

We need to supplement with vitamin D3 because we know that it helps. For women in menopause or men in andropause it is time to replace the missing hormones with bioidentical ones. We need to handle stress and avoid sleep deprivation. And, yes we need to exercise regularly. Following a sensible diet like the Mediterranean diet or the MIND diet makes sense. And let us keep our minds stimulated. Chances are, when we do all of this that we will not need any Alzheimer’s pill. This is not good news for the drug companies, but will be very good news for you. Last but not least, there are no side effects, only health benefits!

Additional resource on how to preserve your memory.

Dec
17
2016

Magnesium Is Essential To Life

Magnesium is an important co-factor in many biochemical reactions, so magnesium is essential to life.

Many diverse diseases and cancers can develop from magnesium deficiency. The key is to supplement with magnesium regularly to get more than the government recommended daily allowance (RDA). The RDA for magnesium is 420 mg a day for males and 320 mg a day for females.

In the following I will review the diseases that occur without enough magnesium on board.

A lack of magnesium can cause heart disease

In this 2014 study 7216 men and women aged 55-80 with at high risk for heart attacks were followed for 4.8 years. The risk of death from a heart attack was found to be 34% lower in the high tertile magnesium group when compared to the lower magnesium tertile group.

The protective mechanism of magnesium was found to be as follows. Magnesium counteracts calcium and stabilizes heart rhythms. Magnesium helps to maintain regular heart beats and prevents irregular heart beats (arrhythmias). It also prevents the accumulation of calcium in the coronary artery walls. This in turn is known to lower the risk of heart attacks and strokes.

Another study, which was part of the Framingham Heart Study, examined calcification of the heart vessels and the aorta as a function of magnesium intake.

There were 2,695 participants in this study. For each increase of 50 mg of magnesium per day there was a 22% decrease in calcification of the coronary arteries. For the same increase of magnesium the calcification of the body’s main artery, the aorta, fell by 12%. Those with the highest magnesium intake were 58% less likely to have calcifications in their coronary arteries. At the same time they were 34% less likely to have calcifications of the aorta.

In a Korean study a group with low magnesium levels was at a 2.1-fold higher risk of developing coronary artery calcifications compared to a group with normal magnesium levels.

Low magnesium increases your stroke risk

In a 2015 study 4443 subjects, men and women aged 40-75 were followed along.

928 stroke cases developed. The researchers compared the group with the highest 30% of magnesium intake with the lowest 10% of magnesium intake. They had significantly lower blood pressure (7 mm mercury) and lower total cholesterol levels. They also had 41% less strokes than those with low magnesium intake.

In a 2015 study that lasted 24 years the authors investigated 43,000 men.

Those with the highest magnesium supplement had a 26% lower stroke risk. Those with the lowest magnesium intake served as a control.

Among women low magnesium levels were shown to cause 34% more ischemic strokes than in controls.

This study included 32,826 participants in the Nurses’ Health Study. Examiners followed them for 11 years.

It is clear from all these studies that supplementation with magnesium can prevent strokes.

Magnesium protects kidney function

This study examined 13,000 adults for 20 years to see how kidney function was dependent on magnesium levels. Those with the lowest magnesium levels had a 58% higher risk of developing chronic kidney disease. It makes sense when you consider that magnesium is necessary to keep arteries healthy, blood pressure low, and blood sugars stable. When diabetics do not control their blood sugars optimally their kidneys develop kidney disease. The term for this is diabetic nephropathy. In the presence of magnesium supplementation and a low sugar diet people are less likely to develop diabetes or kidney disease.

Magnesium helps blood sugar control

A metaanalysis showed that magnesium supplementation was able to improve blood sugar control. This occurred in both diabetics and borderline non-diabetics within 4 months of supplementing with magnesium.

An important factor in helping control blood sugar is magnesium. Here is an article as an example.

Magnesium good for bones and teeth

Magnesium is important for calcium metabolism and this is helping your bones and teeth to stay strong. The bones store half of the body’s magnesium. Another location for magnesium are in our teeth.

Low levels of magnesium lead to osteoporosis, because one of the two structural components of bone (calcium and magnesium) is missing. In addition low magnesium causes inflammatory cytokines to increase. These break down bones. The Women’s Health Initiative showed that when daily magnesium intake exceeded 422.5 mg their hip and whole-body bone mineral density was significantly greater than in those who consumed less than 206.6 mg daily.

With regard to healthy teeth magnesium is important as it prevents periodontal disease.

This study found that there was less tooth loss and there were healthier periodontal tissues in 4290 subjects between 20 and 80.

Those who took magnesium supplements had healthier teeth.

Migraine sufferers improve with magnesium

A double blind randomized study showed that magnesium supplementation can reduce migraines. The researchers in this trial used 600 mg of magnesium supplementation for 4 weeks.

This reduced migraines by 41.6% in the magnesium group compared to the non-supplemented control group.

Another study showed that both intravenous and oral magnesium are effective in reducing migraine headaches.

Intravenous magnesium showed effects on improving migraines within 15 – 45 minutes. The authors concluded that one could supplement other migraine treatments with both oral and intravenous magnesium.

Too little magnesium can cause cancer

It may surprise you to hear that magnesium can even prevent some cancers. Two cancers have been studied in detail. I will limit my discussion to these two.

Pancreatic cancer

One study found that pancreatic cancer was reduced. Researchers recruited 142,203 men and 334,999 women between 1992 and 2000 and included them in the study. After 11.3 years on average 396 men and 469 women came down with pancreatic cancer. On the male side they found that when the body mass index (BMI) was greater than 25.0 there was a 21% reduction of pancreatic cancer for every 100 mg of added magnesium per day. There were a lot of smokers on the female side, which interfered with the study as confounding factors undermined statistical validity.

In another study, the US male Health Professionals Follow-up Study was examined after 20 years of follow-up. Those with a BMI of above 25.0 on magnesium supplementation had a reduced risk of pancreatic cancer. The pancreatic cancer rate in the higher magnesium group was 33% lower than in the lower magnesium group. The higher group consumed 423 mg of magnesium daily, the lower group 281 mg per day. It is significant that in both studies it was the heavier patients who came down with pancreatic cancer. It is common knowledge that obesity is a pancreatic risk factor.

Colorectal cancer

A study done on Japanese men showed that magnesium could protect them significantly from colon cancer.

Men who consumed the highest amount of magnesium developed 52% less colon cancer over 7.9 years. Researchers compared them to the group with the lowest 20% intake of magnesium. The women in this study did not reach statistical significance.

A study from the Netherlands examined colon cancer in patients. They found that only in patients with a BMI of greater than 25.0 magnesium did have protective effects. For every 100 mg of magnesium per day increase there was a 19% reduction of colon polyps. And there was also a 12% reduction of colorectal cancer for every 100 mg increase of magnesium per day.

Magnesium plays an important role in genome stability, DNA maintenance and repair. It also prevents chronic inflammation and reduces insulin resistance, all factors contributing to cancer reduction.

Live longer with magnesium

Consider that magnesium is the fourth most common mineral in the body. Add to this that magnesium is a co-factor of more than 300 enzymes in the body. Magnesium is an important co-factor in the conversion of chemical energy from food that we ingest. Magnesium is regulating blood sugar, blood vessel health and our brain electrical activity. 50% of our stored magnesium is located in our bones, which helps the strength and integrity of them.

Because of the distribution of the enzymes to which magnesium is a co-factor, virtually every cell in the body depends on our regular intake of magnesium.

Magnesium deficiency develops in older age

Since the 1950’s soils have lost magnesium where farmers grow vegetables and raise fruit trees. We simply do not get enough magnesium from food.

But chelated magnesium is freely available in health food stores. Take 250 mg twice per day, and you will have enough.

Because our metabolism slows down, there is a critical age where magnesium deficiency becomes more obvious than when we are younger. By the age of 70 there are 80% of men and 70% of women who do not get the minimum of magnesium-required amount they should get (350 mg for men and 265 mg for women).

Proton pump inhibitors lowering magnesium levels

At this age many people are on multiple drugs. For many proton pump inhibitors (PPI) are used to suppress acid production in the stomach. PPI’s have been associated with low magnesium blood levels. This link explains that when a patient takes PPI’s the total time of taking the medication should not exceed 1 year.

Low magnesium levels accelerate the aging process on a cellular level. Low magnesium levels increase senescent cells that can no longer multiply. Some of them could cause the development of cancer. These senescent cells also can no longer contribute to the immune system. This causes more infections with an adverse outcome.

Remember to take chelated magnesium capsules or tablets 250 mg twice per day and you will be protected from low magnesium levels in your body.

Here is why we live longer with magnesium supplementation

Our blood vessels will not calcify as early; they keep elastic for longer, preventing high blood pressure. Our kidneys will function longer with magnesium, preventing end-stage kidney disease. We need our kidneys to detoxify our system! More than 300 enzymatic reactions all over our body help that we have more energy and also help to prevent cancer. When there are fewer strokes and less heart attacks this helps reduce mortality. Magnesium supplementation helps to lessen the risk for Alzheimer’s disease and also reduces insulin resistance. Researchers have shown that this prevents Alzheimer’s disease.

The bottom line is we live longer and healthier; that is the meaning of longevity.

Magnesium Is Essential To Life

Magnesium Is Essential To Life

Conclusion

Magnesium is a key essential mineral. It balances calcium in the body and participates in many enzymatic reactions in the body as a cofactor. As long as we have enough of this mineral we won’t notice anything. It is with magnesium deficiency that things go haywire. Heart disease or a stroke could affect you . You could get kidney disease. And you could even get pancreatic cancer or colorectal cancer. If this is not enough, magnesium deficiency can cause diabetes, osteoporosis and bad teeth. You may suddenly die with no obvious cause. But, if balance your your magnesium blood level by taking regular supplements, you will carry on living and eliminate a lot of health problems.

Oct
29
2016

High Insulin Levels Can Cause Alzheimer’s

Research published in April 2016 shows that high insulin levels can cause Alzheimer’s. Alzheimer’s disease is more common in diabetics. But until recently nobody knew why there would be this association. Finally new research from New York University (NYU) has shed light on this puzzle. It seems like the key is an enzyme that breaks down insulin, called insulin-degrading enzyme (IDE). Melissa Schilling (no relation to me), an innovation professor at NYU has discovered the metabolic pathway between diabetes and Alzheimer’s disease. This finding has enormous implications regarding the prevention of Alzheimer’s, as I will discuss below. Here is a link to the original paper.

Background information about Alzheimer’s

Alzheimer’s disease affects about 5.2 million Americans and 44 million people worldwide. Above all, there is a progressive loss of cognitive functioning over a long period of time due to senile plaques in the cerebral cortex and the subcortical areas of the brain. These senile plaques consist of amyloid-beta substance and neurofibrillary tangles. This protein material is like glue, which prevents the neurons from working properly and certainly causes memory loss and the confusion, which is so typical for Alzheimer’s patients. Normally amyloid-beta is in solution and prevents lipoproteins in the brain from oxidizing. But when the insulin-degrading enzyme is busy breaking down high levels of insulin, these processes overload this enzyme system. Amyloid-beta experiences supersaturation, as the body does not eliminate it at a normal speed. Consequently, this leads to the glue-like deposits of amyloid-beta in Alzheimer’s brains.

A 2004 estimate for the direct cost of Alzheimer’s disease to the US amounted to  $214 billion. By 2050 this could go up to $1.5 trillion, if there will be no cure Alzheimer’s.

High insulin levels can cause Alzheimer’s, but other mechanisms too

Professor Schilling found in her research that there are four main malfunctions that can lead to high amyloid-beta in the brain of Alzheimer’s patients.

  1. First, with diabetes type1, when the patient does not receive enough insulin, the insulin-degrading enzyme in the brain is not working hard enough. This results in inadequate removal of amyloid-beta from the brain and neurofibrillary tangles of amyloid-beta accumulate.
  2. Second, IDE requires zinc as a co-factor to work properly in breaking down amyloid-beta. Zinc deficiency is quite common, particularly in older people. In this case insulin levels are normal, but the removal of amyloid-beta from the brain is inadequate, as IDE function has become lower.
  3. Furthermore, in early type 2 diabetes there are high insulin levels and there is a competitive inhibition of the elimination of insulin and amylin-beta. This is probably the most common form of getting Alzheimer’s disease.
  4. Finally, excess production of an amyloidogenic protein can lead to an overabundance of amylin-beta, which overwhelms the insulin-degrading enzyme.

What treatment options are there for Alzheimer’s disease?

These four mechanisms from above have several implications as follows.

  1. If a type 1 diabetic patient is insulin deficient, intranasal insulin would be beneficial.
  2. If the patient has type 2 diabetes, intranasal insulin or insulin by injection would be the wrong approach. As stated earlier, there is the competitive inhibition of the elimination of insulin and amylin-beta. It is the insulin-degrading enzyme, which is the limiting factor. This involves simple dietary changes where the patient cuts out sugar and limits starchy foods in the diet. This normalizes insulin levels and the IDE function returns to normal.
  3. Alzheimer’s patients and patients with mild cognitive dysfunction should be tested with glucose tolerance tests (GTT). It the test is abnormal, a knowledgeable dietician should be consulted.
  4. Obesity is strongly associated with hyperinsulinemia and diabetes. Again frequent GTT should be done followed by dietary intervention when abnormal.
  5. Professor Melissa Schilling stated that 86 million Americans are pre-diabetic, but they have no symptoms. Only glucose tolerance testing can diagnose that condition. This will prevent a lot of cases of diabetes and Alzheimer’s disease.
  6. Large parts of the population have no knowledge of the glycemic index of carbohydrates. In order to limit glucose overload and excessive insulin production there is a need for educational nutritional programs. This will be a powerful tool in Alzheimer’s disease prevention.
High Insulin Levels Can Cause Alzheimer’s

High Insulin Levels Can Cause Alzheimer’s

Conclusion

It has been general knowledge for some time that diabetics have a higher rate of Alzheimer’s disease. People have known Alzheimer’s as “Diabetes of the brain” or “Type 3 Diabetes”. This new research has shed some light on the connection of elevated insulin to Alzheimer’s disease. It was news to me that there is a competitive inhibition of the elimination of insulin and amylin-beta via the insulin-degrading enzyme. It boils down to recognizing that sugar overconsumption causes Alzheimer’s disease. If you want to keep your brain power until a ripe old age, you better eliminate a lot of sugar and adopt a healthy Mediterranean diet.